
Excursion 5 Tour II: Shpower
and Retrospective Power

“There’s a sinister side to statistical power” (SIST 
354) I call it Shpower analysis because it distorts 
the logic of ordinary power analysis (from 
insignificant results).

Because ordinary power analysis is also post 
data, the criticisms of shpower are wrongly taken 
to reject both.

Shpower evaluates power with respect to the hypothesis 
that the population effect size (discrepancy) equals the 
observed effect size, e.g., the parameter μ equals the 
observed mean �̅�!, i.e., in T+ this would be to set μ = �̅�!).

The Shpower of test T+:  ( #𝑋 < �̅�"; μ = �̅�!). 1



The Shpower of test T+: Pr(!𝐗 < #𝐱𝛂; μ = #𝐱𝟎)

The thinking is since we don’t know the value of μ, we 
might use the observed �̅�! to estimate it, and then 
compute power in the usual way, except substituting the 
observed value.

Can’t work for the purpose of using power analysis to 
interpret insignificant results. Why?

Since alternative μ is set = �̅�!, and �̅�! is given as 
statistically insignificant, we are in Case 1 from 5.1 
(Exhibit i): the power can never exceed .5.
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In other words, since shpower = POW(T+, μ = #𝑥!), and
#𝑥! < 𝑥 ̅𝛼 ,the power can’t exceed .5.

Between H0  and  &𝒙𝜶 the power goes from α to .5.
a. The power against H0 is α. We can use the power
function to define the probability of a Type I error or the
significance level of the test:

POW(T+, μ0 ) = Pr( #𝑋> #𝑥"; μ0), #𝑥" = (μ0 + zα 𝜎 $%),

𝜎 $% = [σ/√n] 

The power at the null is: Pr(Z > zα;μ0) = α.

But power analytic reasoning is all about finding an
alternative against which the test has high capability to
have obtained significance. Shpower is always “slim” (to
echo Neyman) against such alternatives.
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Unsurprisingly, Shpower analytical reasoning has been 
criticized in the literature: But the critics think they’re 
maligning power analytic reasoning.

The severe tester uses attained power Pr(d(X) > d(x0); µ’) to 
evaluate severity, but to address criticisms of power 
analysis, we have to stick to ordinary power (SIST 355).

Ordinary Power POW (µ’): Pr(d(X) > cα; µ’)
Shpower: Observed or retro-power: Pr(d(X) > cα; μ = �̅�!)

An article by Hoenig and Heisey (2001) (“The Abuse of
Power”) calls power analysis abusive. Is it? Aris Spanos 
and I say no (in a 2002 note)

4



Power-analytic reasoning: High power to get 
significance when μ = μ’, together with your not 
getting significance indicates μ < μ’

But if you replace μ’ by !𝑥! ,it will never be high.
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Exhibit (vii) (SIST, p. 359): Gelman and Carlin (2014) 
appear to be at odds with the upshot of quiz on p. 323, 
start of Tour I.

From our mountains out of molehill fallacies, if 
POW(μ’) is high then a just significant result is poor 
evidence that μ > μ’; while if POW(μ’) is low it’s good 
evidence that μ > μ’.

A way to make sense of their view is to see them as 
saying if the observed mean is so out of whack with 
what’s known, that we suspect the assumptions of the 
test are questionable or invalid.

(See SIST pp. 360-1)

6



5.6 Positive Predictive Value: 
Fine for Luggage (SIST 361)

To understand how the diagnostic screening criticism tests 
really took off, go back to a paper by John Ioannidis (2005).

Several methodologists have pointed out that the high 
rate of nonreplication (lack of confirmation) of research 
discoveries is a consequence of the convenient, yet ill-
founded strategy of claiming conclusive research findings 
solely on the basis of a single study assessed by formal 
statistical significance, typically for a p-value less than 
0.05. Research is not most appropriately represented and 
summarized by p-values, but, unfortunately, there is a 
widespread notion that medical research articles should 
be interpreted based only on p-values. …
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It can be proven that most claimed research findings 
are false (p. 0696).

However absurd such behavior sounds, 70 years after 
Fisher exhorted us never to rely on “isolated results,” let’s 
suppose Ioannidis is right.

Worse, even the single significant result is very often the 
result of the cherry-picking and data-dredging.

Commercially available ‘data mining’ packages actually 
are proud of their ability to yield statistically significant 
results through data dredging (ibid., p. 0699).
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Diagnostic-Screening Model of Tests

• If we imagine randomly selecting a hypothesis from 
an urn of nulls 90% of which are true

• Consider just 2 possibilities: H0: no effect 
H1: meaningful effect, all else ignored,

• Take the prevalence of 90% as 
Pr(H0) = 0.9, Pr(H1)= 0.1

• Reject H0 with a single (just) 0.05 significant result, 
with cherry-picking, selection effects

Then it can be shown most “findings” are false
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Diagnostic Screening (DS) model of Tests

• Pr(H0|Test T rejects H0 ) > 0.5

really: prevalence of true nulls among those rejected at the 
0.05 level > 0.5.

Call this: False Finding rate FFR 

• Pr(Test T rejects H0 | H0 ) = 0.05 

Criticism: N-P Type I error probability ≠ FFR

(Ioannidis 2005, Colquhoun 2014)  
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FFR: False Finding Rate: Prev(H0 ) = .9

α = 0.05 and (1 – β) = .8, FFR = 0.36, the PPV = .64
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Pr(H0 / findings with a P-value of .05) ≠ Pr (reject at level .05; 
H0 )

Only the second one is a Type 1 error probability)

Positive Predictive Value (PPV) (1 – FFR). Apply Bayes’ 
rule using the given relative frequencies (or prevalences):

Pr(+|D) Pr(D)
PPV: Pr(D|+) = [Pr(+|D) Pr(D) + Pr(+|~D) Pr(~D)]

= 1
(1+B)

where
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7

Sensitivity

SENS: Pr( + | D).
H1: D: Dangerous bag 
(~ power)

H 0: ~D: no danger 

Specificity
SPEC: Pr( – | ~D);
( 1 – α)



Even with Pr(D) = .5, with Pr(+|~D) = .05 and 
Pr(+|D)= .8, we still get a rather high

1/( 1 + 1/16) = 16/17

With Pr(D) = .5, all we need for a PPV greater than .5 
is for Pr(+|~D) to be less than Pr(+|D).
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With a small prevalence Pr(D) e.g., < Pr(+|~D) (< α)

• We get PPV < .5 even with a maximal sensitivity 
Pr(+|D) of 1. In There is still a boost from the prior 
prevalence.

Recall absolute vs relative confirmation (B – boost)

• Chart SIST 365

• What is prevalence? (bott 366)
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Probabilistic instantiation fallacy (367) 

The outcome may be X = 1 or 0 according to whether 
the hypothesis we’ve selected is true.

• The probability of X = 1 is .5, it does not follow that 
a specific hypothesis we might choose–say, your 
blood pressure drug is effective–has a probability of 
.5 of being true, for a frequentist-

• Other problems arise is using the terms from 
significance tests for FFR or PPV assessments: 
Pr(+|D) and Pr(+|~D) in the DS criticism.
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The DS model of tests considers 
just two possibilities “no effect” 
and “real effect”.

H0: 0 effect (μ = 0),
H1: the discrepancy against which the test has power 
(1 – β).

It is assumed the probability for finding any effect, 
regardless of size, is the same.

[α/(1 – β)] used as the likelihood ratio to get a posterior 
of H1

If the H1 for which (1 – β) is high, they take it as high 
likelihood for H1

That’s why this is on a chapter on power. 17



For an H1 where (1 – β) is high, take our H1

H1: μ ≥ μ.84

μ.84 is the alternative against which the test has .84 
power.

But now the denial of the alternative H1 is not the 
same null hypothesis used to get Type I error 
probability of .05.

Instead it would be high, nearly as high as .84.
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alternative is μ.84 (3, in our example)
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e.g., let alternative be 2.9, Type I error probability .82
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Likewise if the null μ ≤ μ0 is to have low α, its denial 
won’t be one against which the test has high power (it 
will be close to α).

High power requires a μ exceeding the cut-off for 
rejecting at level α

We have to assume they have in mind a test 
between a point null H0, or a small interval around it, 
and a non-exhaustive alternative hypothesis H1: μ= 
μ.84

Problem: To infer μ.84 based on α = .025 (one-sided) 
is to be wrong 84% of the time.

We’d expect a more significant result 84% of the time 
were
μ.84.

Same problem as with Johnson. 21



Back to the more general problem with
the DS model

Is the PPV computation relevant to what working scientists 
want to assess: strength of the evidence for effects or its 
degree of corroboration?

Crud Factor. In many fields of social and biological science 
it’s thought nearly everything is related to everything: “all nulls
false”.

These relationships are not, I repeat, Type I errors. They 
are facts about the world, and with N – 57,000 they are 
pretty stable. Some are theoretically easy to explain, 
others more difficult, others completely baffling. The ‘easy’ 
ones have multiple explanations, sometimes competing, 
usually not. (Meehl, 1990, p. 206).
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He estimates the crud factor at around .3 or .4.
High prior prev gives high posterior prev
Will we be better able to replicate results in a 

field with a high crud factor?

By contrast: Even in a low prevalence situation, if
I’ve done my homework, went beyond the one P-
value, developed theories, I may have a good
warrant for taking the effect as real.

Avoiding biasing selection effects and 
premature publication is what’s doing the work, 
not prevalence.

The PPV doesn’t tell us how valuable the 
statistically significant result is for predicting the 
truth or reproducibility of that effect.
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We want to look at how well tested the
particular hypothesis of interest is.

Suppose we find it severely tested.

Granted, we might assess the probability
with which hypotheses pass so stringent a
test, if false.

We have come full circle to evaluating the
severity of tests passed. Prevalence has nothing
to do with it.
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The Dangers of the
Diagnostic Screening Model for Science

Large-scale evidence should be targeted for research 
questions where the pre-study probability is already 
considerably high, so that a significant research finding
will lead to a post-test probability that would be
considered quite definitive (Ioannidis, 2005, p. 0700).
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The DS model has mixed up the probability of a
Type I error (often called the “false positive rate”)
with the posterior probability: False Finding Rate
FFR: Pr(H0|H0 is rejected).

In frequentist tests, reducing the Type II error
probability results in increasing the Type I error
probability: there is a trade-off.

In the DS model, the trade-off disappears: reducing
the Type II error rate also reduces the FFR.
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Diagnostic Screening, Probabilistic
instantiation, base rates and all that

The computations for the DS model stem from
Berger and Sellke (1987).

They claim it’s just a heuristic, not that you’d use
prevalences to assign priors.
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FALLACIOUS ARGUMENT:

Pr(the randomly selected null hypothesis is true) = .5
The randomly selected null hypothesis is H51

Pr(H51 is true) = .5

Each null either is true or not! My selecting it from an urn by 
means of a chosen selection procedure does not give 
evidence for its truth or probable truth
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Equivocal:

I can model an experiment of selecting hypotheses
from an urn: if it satisfies a Bernouilli model, I might
say, the probability a (generic) outcome has the 
property (true) = the % true.

But the event (of being red, being true) isn’t a
statistical hypothesis; so isn’t what you need for the
likelihoods.

A statistical hypothesis H assigns probabilities to all
possible outcomes
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Consider this in relation to some
criticisms of severity

A “hypothesis” that consists of asserting that a sample 
possesses a characteristic such as “having a disease” or 
“being college-ready.”

The point is to give it a frequentist prior.
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Students From the Wrong Side of Town

Isaac, has passed comprehensive tests of mastery of 
high school subjects regarded as indicating college 
readiness S…

The battery of tests is assumed to be very capable of 
uncovering lack of readiness, so that such high scores S 
could very rarely result among high school students who are 
not sufficiently prepared to be deemed ‘college ready’.

Take S to be good evidence

H(I): Isaac is not deficient but is college ready. 

And against
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H’(I): Isaac’s mastery of high school subjects is 
deficient, i.e., he is not college-ready.

Pr(S|H(I): Isaac is college ready) ≈ 1, (practically 1) 

Pr(S|H’(I): not college ready (i.e., deficient)) = .05 (very

low)

• We should really consider degrees of readiness, but
here I keep to the supposed counterexample.

Note: Thse numbers do not by themselves lead us to
say H(I) has passed severely.

• Need to know of selection effects

• Not to check that they translate into a process 
that probes readiness, not an “isolated result”
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Suppose a case where H(I) is warranted by dint of
scores S.

“But wait a minute!” says the critic, Isaac was
randomly selected from a population wherein college-
readiness is exceedingly rare, Fewready Town where
only 1 in 1000 are college ready. e.g.,

(*) P(H(I)) =.001.

Thus the posterior probability for H(I) is still low
and H’ (I)(deficient), the posterior is high.

e.g., Pr(H’(I)|S) = .95.
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34

D: ready  ~D: not-ready Pr(D) = .001 Pr(~D) = .999
Pr(e| D) = 1   Pr(e| ~D) = .05.  (D is null hyp in Howson)

Pr(~D| e) = 1/(1 + B). = 1/51 = .02
B = (.05)(.999)/(1)(.001) =.05/.001 = 50



Fallacy of probabilistic
instantiation

The critic – for example, Howson, Achinstein –
sees the conclusion as problematic for the
severity account as, it’s assumed the frequentist
would also accept (∗) P(H(I)) = .001.

Although the probability of college readiness in a
randomly selected student from high schoolers
from Fewready Town is .001, it doesn’t follow that 
Isaac, the one we happened to select, has a
probability of .001 of being college-ready
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To suppose it does is to commit a
kind of a fallacy of division:

The prevalence of readiness in Fewready
Town is low. Isaac comes from Fewready
Town

Thus, there’s a low probability that Isaac is ready

We need not preclude that H(I) has a legitimate
frequentist prior; it might refer to generic and
environmental factors that determine the chance
of his deficiency
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Achinstein’s “response to the probabilistic fallacy
charge is to say that it would be true if the
probabilities in question were construed as
relative frequencies. [but] I am concerned with 
epistemic probability.”

Achinstein’s Rule for Objective Epistemic
Probabilities: If (we know only that) Isaac is
randomly selected from a population where p%
have property C, then the objective epistemic 
probability that Isaac has C equals p.(2010, p. 
187)
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“If all we know is that Isaac was chosen at random
from a very disadvantaged population, very few of
whose members are college ready, say one out of
one thousand,then we would be justified in believing
that it is very unlikely that Isaac is college-ready”

(i.e., Pr(H(I)) = .001 and, hence Pr(H(I)|S) is very
low)

Even though Pr(H(I)|S) has increased from P(H(I))
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For Achinstein, unless the posterior reaches a
threshold of a fairly high number, he claims, the
evidence is “lousy.”

The example considers only two outcomes:
reaching the high scores or not, i.e., S or ∼S.

Clearly a lower grade gives even less evidence of
readiness; that is, Pr(H(I)|~S) < Pr(H(I)|S)

Therefore, whether Isaac scored a high score or
not, Achinstein’s epistemic probabilist reports
justified high belief that Isaac is not ready.
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The probability of Achinstein finding
evidence of Isaac’s readiness even if in fact
he is ready (H is true) is zero.

Therefore, Achinstein’s account violates what we
have been calling the most minimal principle for
evidence:

• The weak severity principle: Data x fail to
provide good evidence for the truth of H’ if the
inferential procedure had very little chance of
providing evidence against H’, even if H’ is
false.
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Reverse discrimination?

• If Isaac had been selected from a population
where college-readiness is common, Manyready
suburbs, the same set of passing scores S
would be regarded as strong evidence for H(I),
Isaac being ready.

• Using this way of evaluating evidence, a high
school student would have to have scored quite a
bit higher on these tests than one selected from
the affluent neighborhood in order for his scores
to be considered evidence for his readiness!
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I consulted with Lehmann after the first round of 
examples in 1996-7

• I was visiting him in Princeton where his wife J.
Shaffer was at the Institute for Educational
Testing Service, and this type of case could arise
in policy-making

• He said: the test hasn’t done its job if it can’t
make distinction in cases of rare diseases or
rare assets

Actually if you actually had a large proportion of 
unready students amongst those who get passing
scores S, there would be many reasons to deem the
tests too lax for severity to be satisfied for Isaac.

So the prior enters, and is grounds to question
those numbers 42



Severity for Problem-Solving
(p. 300): Souvenir U

Note that there’s no reason the problem at
hand can’t be providing an ordinary
conditional probability

Severity then enters to assess if there is
adequate warrant to take the problem as
solved
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The Case of General Hypotheses

When we move from hypotheses like “Isaac is
college-ready” (which are really events) to
generalizations – which Achinstein makes clear he
regards as mandatory the difficulty for obtaining
epistemic probabilities via his frequentist straight rule
become more serious

The percentages “initially true” will vary
considerably, and each would license a distinct
“objective epistemic” prior.

The problems with the diagnostic screening.
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Fisher: The Function of the p-value is
Not Capable of Finding Expression…..

Discussing a test of the hypothesis that the
stars are distributed at random, Fisher takes the low
p-value (about 1 in 33,000) to "exclude at a high
level of significance any theory involving random
distribution" (Fisher (1956), p. 42).

Even if one were to imagine that H0 had an
extremely high prior probability, Fisher continues,--
never minding "what such a statement of probability
a priori could possibly mean "—the resulting high
posteriori probability to H0, would only show that "our
reluctance to accept a hypothesis strongly 
contradicted by a test of significance”… (Fisher (1956),
p. 45) "is not capable of finding expression in any
calculation of probability a posteriori” (Fisher (1956), p.
43). 45



Indeed, if one were to consider the claim
about the a priori probability to be itself a
hypothesis, Fisher suggests, it would be
rejected by the data.

So, if there were a case where H severely
passes test T with x, and yet the posterior of
H given x is low, we are free to take this as
evidence that the posterior fails to do the job 
demanded by the severity requirement.
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Conflicts Between Posteriors & P-values

David Bickel (2021) argues that “if the p-value is 
sufficiently small while the posterior probability 
according to a model is insufficiently small, then 
the model will fail a model check” and may need 
revision (p. 249). In this view, akin to Fisher 
(1956), conflicts between posteriors and p-
values may be resolved by revising the 
Bayesian model.
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1. The priors given in all the examples I’ve seen
are not legitimate frequentist priors for the
statistical hypothesis being tested;

2. Using the procedures recommended by those
who advocate using those priors, we would 
endorse inferences that fail on severity grounds.

3. If there is a legitimate frequentist prior for the H
under test, then, we would assign those
posteriors in the same way we assign
probability to events—values of random 
variables.

4. If the posterior probability of “not-H” is high
even though I regard H as having passed a
severe test, it might well be seen as showing
the inability of the posterior probability concept
to capture the notion of evidence held by a
severe tester! (R.A. Fisher’s position). 48



I think many people who think they want a
probability of a hypothesis really just want ordinary
probabilities of events

The way to get them on the error statistical
account is to obtain good evidence for the statistical
hypothesis (or model) that assigns these
probabilities!

Take a common linear regression

model M: Y = a + bX1+ cX + u

This might let you predict the expected value of Y
given a value for X, e.g., salary, given numbers of
years of training, sex, etc. given the model has
passed severely.
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SIST p. 351 SIN & SIR
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REVIEW: Rigging EC from Assignment 1

1. What’s the difference between weak and strong 
severity? (14, 23). You might wish to give an 
example of each from Excursion 1, or discuss key 
concepts such as: linked vs convergent arguments, 
arguing from coincidence, arguing from error. 

Extra Credit for question #1: Choose one:

(i) Although one could stop after weak severity, the 
severe tester accepts strong severity as well. Why?

(ii) While an ultra-skeptic can always invent 
“rigged” hypotheses, how might this be criticized 
using weak severity alone?(108)
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