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 Error Probabilities in Error

 Colin Howsont*
 London School of Economics

 The Bayesian theory is outlined and its status as a logic defended. In this it is contrasted
 with the development and extension of Neyman-Pearson methodology by Mayo in her
 recently published book (1996). It is shown by means of a simple counterexample that
 the rule of inference advocated by Mayo is actually unsound. An explanation of why
 error-probablities lead us to believe that they supply a sound rule is offered, followed
 by a discussion of two apparently powerful objections to the Bayesian theory, one
 concerning old evidence and the other optional stopping.

 "Bayesian Statistical Methods. A Natural Way to Assess Clinical Evi-
 dence." Title of lead editorial, British Medical Journal (BMJ 1996)

 1. Introduction. People have been practicing inductive inferences for a
 long time, and have evolved lots of informal rules for designing infor-
 mative experiments. An articulated and sound logic underwriting and
 explaining these rules has been longer in coming. The eighteenth cen-
 tury saw in the probability calculus such a logic, but because it ap-
 peared to be a profligate producer of inconsistency it became discred-
 ited, and was superseded by alternative methodologies in this century.
 Now it has made a comeback, under the name of the Bayesian theory,
 while those alternatives themselves have come under heavy attack.

 The Bayesian theory can justify its claim to be a genuine logic in
 having something analogous to a completeness and soundness theo-
 rem: the probability axioms can be shown to be the complete syntax of
 consistent probability assignments. Consistency (also known as coher-
 ence) means that your evaluations of fair odds are consistent in the
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 COLIN HOWSON

 sense that they do not depend on the form in which the relevant gam-
 bles are presented, and hence are invulnerable to a Dutch Book; con-
 sistency is thus an extensional semantic criterion, like truth (Howson
 and Urbach 1993, Ch. 5).

 This account is usually called 'subjective', because it offers no en-
 dogenous evaluation of the values of the probabilities (or the corre-
 sponding odds), save on the extremes of necessarily true and false prop-
 ositions. The terminology is question-begging. Nobody would say that
 deductive logic is subjective just because it does not tell you how to
 evaluate truth-values on propositions other than necessarily true and
 false ones. It is true that we believe (or some of us believe) that there
 is an autonomous realm of facts which make the sentences in deductive

 inferences objectively true or false. On the other hand, there are bodies
 of information available to the agent relative to which (s)he makes the
 judgment of what odds are justified in an uncertain proposition. Are
 these evaluations subjective? There is no general theory of how to per-
 form them-Carnap made that endeavor unfashionable. But again,
 there is no general theory of how to arrive at truth-values: the best we
 can do is guess, subject to the constraints of a suitable logic for eval-
 uating such guesses, or an inductive logic as it is usually styled.

 Now the boot can be put on the other foot, for it turns out that the
 logic of coherence is itself an inductive logic. Various consequences of
 the probability axioms tell us how we should assess the truth-values of
 hypotheses conditional on acquiring evidence. The most celebrated
 of these is Bayes's Theorem, together with its variants. One of these is
 especially germane to the present discussion. Let h be a hypothesis and
 e evidence; then

 P(hle) P(h)
 P(h) + P(elhi)P(h,)

 P(elh)

 where {h,hi: i = 1,...} is the partition of alternative explanations of
 e that we regard as exhaustive, at any rate for now. We can see that
 for given P(h), P(elh), (1) will be maximized by an outcome e such that
 P(elhi) is small wherever P(hi) is not negligible. This tells us that as far
 as determining the likely truth of h is concerned, the most informative
 experimental designs are those which will effectively rule out the ex-
 planation of a positive outcome by any plausible alternative to h.

 That is as much of the Bayesian theory that concerns us for the
 present discussion. The salient points are that it is an inductive logic,
 in that it provides information about how appropriate experiments can
 provide evidence in favor of (and also against) specified hypotheses,
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 and it that it is demonstrably sound, according to its semantic criterion
 of coherence. I shall contrast it in this respect with the recent adapta-
 tion, due to Mayo (1996), of the Neyman-Pearson theory beyond its
 original domain of purely statistical testing. In this, called by Mayo the
 'error-based' approach, the following inferential rule, which I shall
 henceforth refer to as (*), is proposed: 'Evidence e should be taken as
 good grounds for H to the extent that H has passed a severe test with e'.
 (Mayo 1996, 177, my italics; Mayo uses the capital H, and I shall follow
 her while discussing her account). She also says that such evidence
 'indicates the correctness of hypothesis H' (p. 64).

 What does passing a severe test with e mean? The answer requires
 a preliminary notion of an ordering of outcomes in terms of how well
 they 'accord with' or 'fit' H. This notion is never defined explicitly but
 Mayo proposes as a 'minimal' condition that e does not fit H if e is
 improbable under H. There are problems with this: 12 heads in 26
 tosses of a coin intuitively accords with the hypothesis that the tosses
 are independent with constant probability of 1/2 of yielding a head, yet
 it is highly improbable under that hypothesis. Perhaps relative proba-
 bility (or density where appropriate) rather than just probability would
 be a better way of characterizing fit, but I shall not dwell on this,
 because it will not affect the subsequent discussion. At any rate, a pass-
 ing outcome is one that fits or accords with H (p. 178).

 "Passing a severe test with e" is now defined to mean that "There
 is a very low probability that test procedure T would yield so good a
 fit [as e], if H is false" (p. 180). In other words, the probability of an
 outcome as good as e or better in the fitness ordering is very improbable
 if H is false. If we let Ae be the set of outcomes fitting H at least as well
 as e, the conditions for H to pass a severe test with e can be stated
 concisely as

 (i) e fits H; and
 (ii) pH(Ae) is very small.

 I have used a lower case p here to distinguish the sorts of probabil-
 ities involved in this account of severe tests with Bayesian probabilities.
 The former are the sort of probabilities that Carnap distinguished as
 probabilities2, and Mayo calls chances, i.e., objective statistical prob-
 abilities, while the latter are epistemic. However, this restriction to
 chances requires immediate amendment of (ii), since talk of the chance
 assigned A by --H is meaningless where the background information
 does not determine a unique chance distribution when H is false. The
 amended (ii) for such hypotheses demands instead a small chance
 PH'(A) for each alternative hypothesis H' in whatever set of alternatives
 to H consistent with that information (those familiar with Neyman-
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 Pearson theory will recognize the criterion of selecting uniformly most
 powerful tests where they exist). It can plausibly be objected that since
 this logic does not tell us what may and may not be used as such
 background information, the charge of arbitrariness so often leveled
 at the Bayesian theory for countenancing exogenously determined
 prior probability distributions could with equal justice be turned on
 advocates of the error-probability scheme. Never mind. There are other
 features of the rule (*) which I want to highlight.

 First, it raises questions which it does not answer. Exactly how
 small, for example, is a very small probability, given -H, of getting an
 outcome according with H at least as well as e? And why do we have
 to consider the probabilities of outcomes other than those actually ob-
 served? These questions would presumably be answered in an adequate
 argument for (*) itself. But-and contrast this with the Bayesian the-
 ory-though there are various claims made that it is by severe testing
 that we eliminate error, there is nothing resembling a proof that (*) is
 a sound rule. Nor could there be, since, as I shall show in the next
 section, (*) is demonstrably unsound.

 2. An Unsound Rule. The usual way of demonstrating unsoundness is
 by means of a counterexample, and I shall now describe one. Though
 the precise formulation is due to Korb (1991), the general idea is fa-
 miliar in the literature (Rosenkrantz 1977, 206). Consider a test for the
 presence of a particular disease. Let H be the hypothesis 'the disease is
 present in the (randomly-chosen) test-subject'. To foreclose questions
 about the precise constitution of the set Ae above, we shall assume that
 the test delivers only two outcomes 'positive' and 'negative' (where
 'negative' means 'the disease is absent' and 'positive' means that it is
 present). Thus Apositive is simply the singleton {positive}. Suppose that
 adequate statistics exist to determine pH(positive) and p_H(negative).
 Indeed, suppose that pH(positive) is large, say 1. The test, in clinicians'
 argot, has 0% false negatives; in Mayo's terminology, 'positive' fits H
 maximally well. So H passes the test with 'positive'. Suppose also that
 the test has excellent false-positive rates; i.e., p_H(positive) is very small,
 say 5%. Thus H passes a severe test with 'positive', and hence by (*)
 'positive' indicates the correctness of H. But now also suppose that the
 disease is known to have an extremely small incidence, say 1 in 1000,
 i.e., .001. In this example we can faithfully represent all the subscripted
 probabilities as appropriate conditional probabilities, and we can use
 the probability calculus to tell us what the chance is of H being true
 given a positive outcome. By Bayes's Theorem we infer that
 p(Hlpositive) = .0196. The criteria for an extremely stringent test are
 satisfied, yet far from indicating the correctness of H, the data give the
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 chance that a subject who tests positive has the disease as very small
 indeed, under 2%!

 The counterexample shows clearly that despite the test's being as
 severe as you like, it is a mistake to suppose that the very (small) chance
 of a test's passing a hypothesis h when h is false is by itself any indicator
 of the correctness of h if h passes the test (we can clearly get the same
 sort of result however small p('positive'l-,h) is, as long as it is positive,
 by correspondingly adjusting the prior for h). Indeed, if you infer from
 the test's positive diagnosis to the presence of the disease you will be
 wrong nearly all the time.

 3. What's Gone Wrong? As numerous pieces of research have shown,
 people find it difficult to interpret probabilities, and the main reason
 is that ordinary language lacks the requisite scope operators, particu-
 larly where conditional probabilities are concerned, and consequently
 equivocates. The error characteristics of the test above sound impres-
 sive because of the informal way a type II error is standardly described,
 as a small chance of the test passing a false hypothesis, which it is
 equally easy to read as a small chance of a false hypothesis passing the
 test. Indeed, the two descriptions are virtually equivalent in ordinary
 discourse. Thus the informal reporting of the type II characteristics of
 the test in the context of the present example could easily be taken to
 mean either (i) a small chance of the diagnosis being positive if the
 disease is absent (i.e., the traditional type II error); or (ii) a small chance
 of the diagnosis being positive conditional on the disease being absent;
 or (iii) a small chance of the disease being absent conditional on the
 diagnosis being positive. But these are all quite different probabilities.
 In order to 'indicate the correctness of h', in Mayo's terminology, the
 test should have the property (iii), whereas in fact it has property (i)
 (she writes it as (ii)), not property (iii). In fact, as we have seen, a small
 type II error as in (i) puts almost no limit on how large the chance in
 (iii) can be, and therefore how large what we might call the 'real' type
 II error can be (Schield 1996 contains an excellent discussion along
 similar lines). Error statisticians, aided and abetted by the equivocal
 nature of informal language, have for decades given us something quite
 different from what we want, which is a way of computing the degree
 of confidence we should invest in hypotheses given empirical evidence.
 The error probabilities characterizing the test do not do this, as we see.
 Only recently has common sense returned, common sense reduced to
 a calculus, to use Laplace's apt words, and now known as the Bayesian
 theory. Indeed, since Bayes's Theorem was used to compute the chance
 of H given the outcome 'positive', the Bayesian theory thereby accu-
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 mulates weight behind its claim to be regarded as the logic of inductive
 support.

 It might be objected that the hypothesis in the example is a random
 variable, whereas a hypothesis of the sort philosophers of science usu-
 ally discuss is not (Mayo several times claims that hypotheses are not
 random variables). The objection is both wrong and beside the point.
 It is wrong because there are models of Kolmogorov's axioms in which
 hypotheses are random variables (measurable functions): any hypoth-
 esis is a two-valued random variable in the appropriate space. The
 objection is beside the point since the error-probability conditions for
 a severe test of that particular hypothesis H are clearly satisfied; equally
 clearly, passing the test provides no indication of H's correctness. In-
 deed, the counterexample is so telling precisely because H is a random
 variable, possessing an empirically-based prior distribution.

 The message is clear: rely on error probabilities only at your peril.
 As Mayo remarks: "To get at the underlying rationale of a methodo-
 logical rule we ask: if experiments were allowed to violate freely the
 methodological requirement in question, would some ... clearly un-
 reliable argument [be] allowed?" (1996, 454). Yes, it would be if you
 make the sorts of inference Mayo wants to make without regard to
 priors, whether they are empirically backed or not. Even Popper, no
 friend of the Bayesian theory, implicitly conceded this, when he pointed
 out that with a prior of 0 for a universal hypothesis h it is incorrect to
 regard the passing of a test, any test, as indicating anything at all about
 the truth-value of h, or its performance in future tests (Popper 1972,
 18-19).

 4. Some Objections to Bayesianism. The explicit dependence on subjec-
 tive prior probabilities is the usual starting point for attacks on the
 subjective Bayesian theory. As we have seen, however, they are indis-
 pensable if inductive inferences are not to fall prey to fallacy through
 relying solely on the deceptive testimony of likelihoods. Nor are prior
 distributions optional. There is powerful evidence, supplied in the stan-
 dard derivations of a utility-plus-probability scale and elsewhere, that
 to have what are formally prior probabilities is a condition of consis-
 tency in your evaluation of uncertainty. The fact that these are usually
 implicit rather than explicit does not mean that they are not there.

 A current focus of strong criticism of the Bayesian theory, regarded
 even by John Earman as a black eye for the theory (Earman 1992, 135)
 is the so-called 'old evidence' objection, first voiced by Clark Glymour
 (1980). He noted that if e is already known at the time h is formulated,
 then P(e) = 1; hence trivially P(hle) = P(h), and so e fails to support
 h (increase its probability). But now this looks very bad for the Bayes-
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 ian theory because it conflicts sharply with our intuitions in some very
 well-known examples drawn from the history of science, like the pre-
 cession of Mercury's perihelion vis-a-vis Einstein's theory of General
 Relativity. I am going to claim that the problem as formulated by
 Glymour rests on an improper use of a formula, as improper as using
 the cancellation law of arithmetic when the term cancelled is 0.

 That some part of the Bayesian theory is being misused is evident
 when it is seen that it follows from the analysis above that no evidence
 can be regarded by a Bayesian as supporting any hypothesis. For evi-
 dence is by hypothesis known and so P(e) = 1 always. Were it a valid
 use of the Bayesian formulas to plug P(e) = 1 into the calculation of
 posteriors, then the theory would not have lasted three minutes let
 alone three hundred years. Clearly, you are not entitled to substitute 1
 for P(e) and P(elh) in computing support by Bayes's theorem just be-
 cause you know that e is true.

 What are you supposed to do? A simple example will tell us. Suppose
 that e reports the result of a sequence of n tosses, with observed fre-
 quency of heads r. You want to compute the posterior distribution of
 p, the probability of a head, on e. The value of P(e) that is relevant in
 this computation is the integral of nCrpr(l - p)n-rf(p), where f(p) is your
 prior density distribution. This is equivalent to saying that for the pur-
 poses of the computation you are acting on the information supplied
 by your conditional probabilities and priors on the assumption that e
 is not yet known. In other words, you are assuming counterfactually
 that you do not yet know e.

 What is true in the way support is computed in this example holds
 generally. Of the much written about 'old evidence', virtually all of it
 claims that there is no way of evaluating the counterfactual probability
 of e. Mayo even calls the idea 'silly' (1996, 334). But it is not silly at
 all: we have just seen how it can be done by appeal to other of your
 beliefs: P(e) is equal to the total probability SP(elhi)P(hi), where {hi} is
 the family of those alternatives you propose as alternative explana-
 tions. It might be objected that if e has been known a long time all the
 priors will be contaminated by this knowledge. This is a reasonable
 point. One way of decontaminating them is to assume for the purposes
 of this inference a uniform distribution, tantamount to letting the data
 decide between the competing alternatives. Or there may be other con-
 siderations unconnected with e you might wish to introduce, which
 weigh strongly with you, like symmetry considerations, or simplicity,
 etc. But once you have settled on your prior distribution the problem,
 at least theoretically, is solved: you will have found your counterfactual
 probability of e, which in general will be less than 1.

 Glymour does consider this way of doing things in the context of
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 the Mercury perihelion example, but denies its validity because the
 measured perihelion shift, changing as it did over the years, was inse-
 cure, and therefore P(e) was never equal to 1 (Glymour 1980, 88). This
 seems to be beside the point, which is how, when it is equal to 1, a
 Bayesian can compute a value for P(hle) different from P(h). So let us
 suppose that P(e) is 1 in this case, and see how the computation of a
 'counterfactual' P(e) might go, bearing in mind the considerations
 above. There are two principal alternative explanations of the obser-
 vations, Newton's theory (h) and Einstein's theory (h'), and some back-
 ground information at the time about relevant parameters like the
 distribution of matter in the solar system. O.K. P(e) = P(elh)
 P(h) + P(elh')P(h') + k where k is some smallish positive number (h and
 h' might after all both be false). P(elh) is close to 0 and P(elh') rather
 more substantial. Assume now that P(h) and P(h') are initially both
 equal to just under 1/2 before the tribunal represented by e. We there-
 fore have P(e) as approximately equal to 1/2P(elh').

 Mayo, who says she is echoing Earman, objects that attempting to
 'subtract out' current knowledge of e in the Mercury case founders on
 the fact that Einstein constructed his theory using e as a constraint.
 What founders on this observation, however, is not the procedure I
 have just described, but the idea that it is the surprise-value of seeing
 that e is deducible from h that generates support for h (this is a view
 considered sympathetically by Garber (1983) and others). The view I
 have given certainly does not founder on it. Why should the fact that
 I have constructed h with e in mind preclude an assessment of how
 well e is explained by h in comparison with alternative explanations?

 The final objection I shall consider to the Bayesian theory, and with
 which Mayo herself makes considerably play, is focused on optional
 stopping (i.e., the termination of data collection once some desired char-
 acteristic of it has been achieved). For example, it is a consequence of
 the law of the iterated logarithm that with probability one continued
 repetition will eventually yield an overall outcome an arbitrary number
 of standard deviations from the mean determined by the hypothesis, call
 it h, that the mean of a normal distribution with known variance takes
 a particular value. If there is a uniform, and hence improper, prior dis-
 tribution over the mean it is well-known that the posterior distribution
 is normal (and so proper) with the same variance. This has the conse-
 quence, pointed out by Armitage (Savage 1962, 72) and quoted by Mayo
 (1996, 342-343), that if h is true then continued repetitions will with
 probability one generate an overall outcome giving h an arbitrarily small
 posterior probability. Similarly, if h is false, the strong law of large num-
 bers tells us that with probability one we shall obtain a result giving h
 an arbitrarily small posterior probability. Yet if the experiment is delib-
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 erately planned to proceed until such an outcome is obtained, and then
 stop, our intuitions tell us that the posterior probability arises from data
 highly biased against h. Thus the Bayesian theory seems capable of pro-
 ducing to order conflicts with obviously correct intuitions. Mayo: "This
 is Armitage's argument. No satisfactory answer has been forthcoming,
 nor is there one. Armitage is right" (1996, 354).

 One idea that might occur is to accept the premise that the infor-
 mation that the test continues until the requisite value of the posterior
 probability is obtained is relevant information, and condition on it.
 Such a strategy is in effect recommended by Rosenkrantz (1977, 199).
 However, the idea does not work in this case, for it amounts to condi-
 tioning on the set of outcomes which will generate that posterior prob-
 ability; but this is a set of probability one, and so it makes no difference
 whether it is conditioned on or not (for why Rosenkrantz's strategy will
 not work in a more general setting see Seidenfeld 1979, n. 4).

 There is nevertheless more than one way of answering Armitage.
 Kadane, Schervish, and Seidenfeld (1996) point out that the certainty
 of a misleading result like this depends on the use of improper priors.
 They give an elementary argument from expectations to show that with
 countably additive, and hence proper, probabilities the agent's prob-
 ability function will never generate such 'foregone conclusions' (i.e.,
 with probability one; 1996, S283).

 However, it is not difficult to see that the certainty of obtaining
 misleading results even with the improper prior is not at all the meth-
 odological disaster it sounds. The fact is that you still can't actually
 plan in any meaningful sense to get them. You may know with certainty
 that you will, but you don't know when since there is no upper bound
 on the length of time you might have to wait (indeed, it might even be
 infinitely long). There is an analogy with number theory. You know
 that after a finite number k of computations you will get a 'yes' answer
 from your personal Turing machine just in case n is in a given recur-
 sively enumerable set Q of integers, but if Q is not recursive you cannot
 compute a bound on k. Armitage's mathematics is correct, but all it
 says is that misleading results will occur although you can not predict
 when. This fact is neither surprising nor does it provide an algorithm
 for being able to produce them (cf. Good 1983, 135, final paragraph).
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