
Excursion 5 Tours I Power:
Pre-data, Post-data & How not 
to corrupt power

A salutary effect of power analysis is that it 
draws one forcibly to consider the magnitude 
of effects. In psychology, and especially in 
soft psychology, under the sway of the 
Fisherian scheme, there has been little 
consciousness of how big things are.
(Cohen 1990, p. 1309)
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• You won’t find it in the ASA P-value statement.
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• Power is one of the most abused notions in all 
of statistics (we’ve covered it, but are doing a 
bit more today)

• Power is always defined in terms of a fixed cut-
off cα, computed under a value of the 
parameter under test

These vary, there is really a power function.

• The power of a test against μ’, is the probability 
it would lead to rejecting H0 when μ = μ’. (3.1)

POW(T, μ’) = Pr(d(X) > cα; μ = μ’)
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Fisher talked sensitivity, not 
power:

Oscar Kempthorne (being interviewed by J. 
Leroy Folks (1995)) said (SIST 325):

“Well, a common thing said about [Fisher]
was that he did not accept the idea of the 
power. But, of course, he must have.
However, because Neyman had made 
such a point abut power, Fisher couldn’t 
bring himself to acknowledge it” (p. 331).



4

Errors in Jacob Cohen’s definition in his 
Statistical Power Analysis for the Behavioral 
Sciences (SIST p. 324)

Power: POW(T, μ’) = Pr(d(X) > cα; μ = μ’)

• Keeping to the fixed cut-off cα is too coarse for 
the severe tester—but we won’t change the 
definition of power

“
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N-P gave three roles to power:

• first two are pre-data, for planning, 
comparing tests; the third for interpretation 
post-data—to be explained in a minute

(Hidden Neyman files, from R. Giere 
collection).
Mayo and Spanos (2006, p. 337)
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5.1 Power Howlers, Trade-offs and 
Benchmarks

Power is increased with increased n, but also by
computing it in relation to alternatives further and
further from the null.

• Example. A test is practically guaranteed to 
reject H0, the “no improvement” null, if in fact H1 
the drug cures practically everyone. (SIST p. 
326)
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It has high power to detect H1
But you wouldn’t say that its rejecting H0 is evidence H1
cures everyone.

To think otherwise is to commit the second form of MM
fallacy (p. 326):

Mountains out of Molehills (MM) Fallacy (second 
form) Test T+: The fallacy of taking a just significant 
difference at level α (i.e., d(x0) = dα) as a better 
indication of a discrepancy μ’ if the POW(μ’) is high 
than if POW(μ’) is low. 

“This is a surprisingly widespread piece of nonsense which
has even made its way into one book on drug industry
trials” (ibid., p. 201).(bott SIST, 328)



8

Trade-offs and Benchmarks

a. The power against H0 is α.

POW(T+, μ0 ) = Pr( !𝑋 > 𝑥̅!; μ0), 𝑥̅! = (μ0 + zα𝜎 "#),
𝜎$# = [σ/√n])

The power at the null is: Pr(Z > zα;μ0) = α.

It’s the low power against H0 that warrants taking a 
rejection as evidence that μ > μ0 .

We infer an indication of discrepancy from H0 
because a null world would probably have yielded 
a smaller difference than observed.
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Trade-offs and Benchmarks

Let 𝑥̅! = the cut-off for rejection at the α level

𝑥̅! =(μ0 + zα𝜎 "#), . 𝜎$# = [σ/√n]) i.e.,SE

Our usual test T+: μ = μ0 versus μ > μ0 

IN GENERAL POW(μ’) = Z > zα

Z =  (𝒙𝜶 – μ’)/SE
The power at the null μ0 is: Pr(Z > zα;μ0) = α.
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Let 𝑥̅! = the cut-off for rejection at the α level

𝑥̅! =(μ0 + zα𝜎 "#), 𝜎$# = [σ/√n]) i.e., SE

POW(μ0)

Z =  (𝒙𝜶 – μ0)/SE

The power at the null μ0 is: Pr(Z > zα;μ0) = α.



Example 1: Left Side: Sample size: 100; Observed mean 
difference (from null): 2; 𝛼: 0.025

Right side: “discrepancy value” is 0. Power is .025 (same 
as 𝛼) 11
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𝐏𝐎𝐖 (&𝒙𝜶) ?

Let 𝑥̅! = the cut-off for rejection at the α level

Z =  (𝒙𝜶 – 𝑥̅" )/SE

The power at 𝑥̅! is Pr(Z > 0) = .5



b. The power of T+ for μ1= 𝑥̅! is .5. Here, Z = 0, 
and Pr(Z > 0) = .5, so:

POW(T+, μ1 = 𝑥̅!) = .5.

discrepancy = 2,power is ~0.5 
13
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b. The power > .5 only for alternatives that 
exceed the cut-off 𝑥̅! ,

Remember 𝑥̅! is (μ0 + zα𝜎 $#).

The power of test T+ against μ = 𝑥̅! is .5.

In test T+ the range of possible values of !𝑋 and μ
are the same, so we are able to set µ values this 
way, without confusing the parameter and 
sample spaces.
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An easy alternative to remember with reasonable 
high power (SIST 329): μ.84 :

Abbreviation: the alternative against which test 
T+ has .84 power by μ.84 :

The power of test T+ to detect an alternative that 
exceeds the cut-off 𝑥̅! by 1𝜎 $# =.84.

Other shortcuts on SIST p. 328



The power > .5 only for alternatives that 
exceed the cut-off 𝑥̅!, 
We get the shortcuts on SIST p. 328

Remember 𝑥̅! is (μ0 + zα𝜎 "#). 

marcosjnez.shinyapps.io/Severity/
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https://t.co/pyEVTKfg1C
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Trade-offs Between α, the Type I Error 
Probability and Power

As the probability of a Type I error goes down the 
probability of a Type II error goes up (power goes down).

If someone said: As the power increases, the probability 
of a Type I error decreases, they’d be saying, as the Type 
II error decreases, the probability of a Type I error 
decreases.

That’s the opposite of a trade-off! So they’re either using 
a different notion or are wrong about power.

Many current reforms do just this!
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Criticisms that lead to those reforms also get 
things backwards

Ziliak and McCloskey “refutations of the null are 
trivially easy to achieve if power is low enough or 
the sample is large enough” (2008a, p. 152)?

They would need to say power is high enough 
raising the power is to lower the hurdle, they get it 
backwards (SIST p. 330)

More howlers on p. 331
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Criticisms that lead to those reforms also get 
things backwards

Ziliak and McCloskey “refutations of the null are 
trivially easy to achieve if power is low enough or 
the sample is large enough” (2008a, p. 152)?

They would need to say power is high enough 
raising the power is to lower the hurdle, they get it 
backwards (SIST p. 330)

More howlers on p. 331



338  Power analysis arises to
interpret negative results:
d(x0) ≤ cα:

• A classic fallacy is to construe no evidence 
against H0 as evidence of the correctness of H0.

• “Researchers have been warned that a 
statistically nonsignificant result does not ‘prove’ 
the null hypothesis (the hypothesis that there is 
no difference between groups or no effect of a 
treatment …)”.

Amrhein et al., (2019) take this as grounds to 
“Retire Statistical Significance”

• No mention of power, designed to block this 
fallacy 1320
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It uses the same reasoning as significance tests. 
Cohen:

[F]or a given hypothesis test, one defines a 
numerical value i (or iota) for the [population] ES, 
where i is so small that it is appropriate in the 
context to consider it negligible (trivial, 
inconsequential). Power (1 – β) is then set at a 
high value, so that β is relatively small. When, 
additionally, α is specified, n can be found.

Now, if the research is performed with this n and 
it results in nonsignificance, it is proper to 
conclude that the population ES is no more than 
i, i.e., that it is negligible…
(Cohen 1988, p. 16; α, β substituted for his a, b).
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Ordinary Power Analysis: If data x are not 
statistically significantly different from H0, and
the power to detect discrepancy γ is high, then x
indicates that the actual discrepancy is no
greater than γ
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Neyman an early power analyst

In his “The Problem of Inductive Inference” 
(1955) where he chides Carnap for ignoring 
the statistical model (p. 341).

“I am concerned with the term ‘degree of 
confirmation’ introduced by Carnap. …We 
have seen that the application of the locally 
best one-sided test to the data…failed to 
reject the hypothesis [that the 26 
observations come from a source in which the 
null hypothesis is true]”.
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“Locally best one-sided Test T

A sample X = (X1, …,Xn) each Xi is Normal, 
N(μ,σ2), (NIID),
σ assumed known; X̅ the sample mean

H0: μ ≤ μ0 against H1: μ > μ0.

Test Statistic d(X) = (X̅ - μ0)/σx, 
σx = σ /√𝑛

Test fails to reject the null, d(x0) ≤ cα.
“The question is: does this result ‘confirm’ 
the hypothesis that H0 is true [of the
particular data set]? ” (Neyman).

Carnap says yes… 24
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Neyman:
“….the attitude described is dangerous.
…the chance of detecting the presence [of 
discrepancy γ from the null], when only [this 
number] of observations are available, is 
extremely slim, even if [γ is present].”

“One may be confident in the absence [of that
discrepancy only] if the power to detect it were
high”. (power analysis)

If Pr(d(X) > cα; μ = μ0 + γ) is high

d(X) ≤ cα;

infer: discrepancy < γ
25



Problem: Too Coarse
Consider test T+ (α = .025): H0: μ = 150 vs.
H1: μ ≥ 150, α = .025, n = 100, σ = 10, 𝜎 $# = 1.
The cut-off = 152.

Say !𝑥% =151.9, just missing 152, treated the same 
as smaller ones, say 149

Consider an arbitrary inference μ < 151.

We know POW(T+, μ = 151) = .16
(1𝜎 $# is subtracted from 152).
.16 is quite lousy power.

It follows that no statistically insignificant result 
can warrant μ< 151 for the power analyst. 1926



Problem: Too Coarse
Consider test T+ (α = .025): H0: μ = 150 vs.
H1: μ ≥ 150, α = .025, n = 100, σ = 10, 𝜎 $# = 1.
The cut-off = 152.

We know POW(T+, μ = 151) = .16

Z = (152 – 151)/1 = 1

Pr(Z > 1) = .16
.16 is quite lousy power.

It follows that no statistically insignificant result 
can warrant μ< 151 for the power analyst. 1927
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We should take account of the actual result:

SEV(T+, !𝑥% = 149,μ < 151) = .975.

Z = (149 -151)/1 = -2

SEV (μ < 151) = Pr (Z > z0; μ = 1) = .975
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SEV(μ < 151) = 1 – SEV(μ > 151)

Z = (149 -151)/1 = -2

SEV (μ < 151) = Pr (Z > z0; μ = 1) = .975

If the test fails to reject, we look at Pr (test 
would have resulted in a larger difference than 
it did)
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(1) P(d(X) > cα; μ = μ0 + γ) Power to detect γ

• Just missing the cut-off cα is the worst case

• It is more informative to look at the probability of 
getting a worse fit than you did

(2) P(d(X) > d(x0); μ = μ0 + γ) “attained power” Π(γ)

Here it measures the severity for the inference 
μ < μ0 + γ

Not the same as something called “retrospective 
power” or “ad hoc” power!
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Π(γ) = “sensitivity achieved” p. 151 (Mayo and Cox 
2006)

Here it measures the severity for the inference 
μ < μ0 + γ

Not the same as something called “retrospective 
power” or “ad hoc” power!
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The only Time Severity equals 
Power for a claim

!𝑋 just misses !𝑥! and you want SEV(μ < μ’)

Then it equals POW(μ’)

For claims of form μ > μ’ it’s the reverse:

(the ex on p. 344 has different numbers but 
the point is the same: )

n=25, s =1 SE = 1/sq root of 25 = .2



Power vsSeverity for 𝛍 > 𝛍𝟏
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Severity for (nonsignificant 
results) and confidence bounds

Test T+: H0: μ < μ0 vs H1: μ > μ0 
σ is known

(SEV): If d(x) is not statistically significant, then 
test T+ passes µ < M0 + kεσ/ n.5 with severity
( 1 – ε),

where P(d(X) > kε) = ε.

The connection with the upper confidence limit 
is obvious.
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One can consider a series of upper discrepancy 
bounds…

SEV(μ < 𝑥̅0 + 0σx) = .5
SEV(μ < 𝑥̅0 + .5σx) = .7

SEV(μ < 𝑥̅0 + 1σx) = .84
SEV(μ < 𝑥̅0 + 1.5σx) = .93
SEV(μ < 𝑥̅0 + 1.96σx) = .975

This relates to work on confidence distributions.

But aren’t I just using this as another way to say 
how probable each claim is?
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No. This would lead to inconsistencies 
(famous fiducial feuds)

(Excursion 5 Tour III: Deconstructing N-P vs 
Fisher debates
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The reasoning instead is counterfactual:

H: μ < 𝑥̅0 + 1.96σx 

(i.e., μ < CIu )

H passes severely because were this inference 
false, and the true mean μ > CIu then, very 
probably, we would have observed a larger 
sample mean
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Power vs Severity analysis for 
non-significant results

Power Analysis (ordinary): If Pr(d(X) > cα; µ’) = high 
and the result is not significant, then it’s an 
indication or evidence that µ < µ’ (or µ < µ’. )

Severity Analysis: If Pr(d(X) > d(x0); µ’) = high and 
the result is not significant, then it’s an indication or 
evidence that µ < µ’.

If Π(γ) is high it’s an indication or evidence that µ < µ.’
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Excursion 5 Tour II
Focus just on ordinary power analysis

“There’s a sinister side to statistical power” 
(SIST, p. 354)

I’ve seen otherwise excellent books, say 
“Power analysis? Don’t!”

I call it shpower analysis because it distorts 
ordinary power analytic reasoning from large 
P-values—negative results.
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Excursion 5 Tour II 
Shpower and Retrospective Power

Because ordinary power analysis is also post 
data, the criticisms of shpower are wrongly 
taken to reject both.

Shpower evaluates power with respect to the 
hypothesis that the population effect size 
(discrepancy) equals the observed effect size, 
e.g., the parameter μ equals the observed 
mean 𝑥̅0, i.e., in T+ this would be to set
μ = 𝑥̅0).

The Shpower of test T+: Pr( !𝑋 > !𝑥!; 𝜇 = 𝑥̅%).
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The Shpower of test T+:
Pr(&𝑿 > &𝒙𝜶; 𝝁 = &𝒙𝟎)

Since alternative μ is set = 𝑥̅0, and 𝑥̅0 is given as 
statistically insignificant, the power can never 
exceed .5.

In other words, since shpower = POW(T+, 𝜇 = 𝑥̅%),
and 𝑥̅% < !𝑥!, the power can’t exceed .5.

But power analytic reasoning is about finding an 
alternative against which the test has high 
capability to have obtained significance.
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Neyman and Cohen focus on cases where 
there’s high power to detect an effect deemed 
negligible, so you can infer evidence of “a 
negligible effect”

The logic lets you infer µ < µ’—the discrepancy 
or ES that probably would have led to a 
significant result is absent in shpower Tour II.

Else, just report you cannot rule out a non-
negligible effect
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Tiny illustration of Power & sample size
H0: μ ≤ 150 vs. H1: μ > 150 
(Let σ = 10, n = 100)
let α = .025
POW(T+, μ1 ) = Pr(Test T+ rejects H0; μ1),

Consider μ1 = 153

POW(T+, 153) Pr(𝑋! > 152; μ =

153) Z = (152 – 153)/ 𝜎"! = -1
Pr (Z > -1) = .84

(Test has .84 power to detect 153 but 
observing observing M = 152 is poort’s
poor evidence μ > 153)
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Illustration with ordinary power and sample size
H0: μ ≤ 150 vs. H1: μ > 150

(Let σ = 10, n = 25) Now = SE=2 (i.e., 10/5) let α =
.025
POW(T+, μ0 ) = Pr(Test T+ rejects H0; μ0),

Again consider μ1 = 153

2SE cut-off is 154

POW(T+, 153) Pr(𝑋" > 154; μ = 153)
Z = (154 – 153)/ 2 = .5
Pr (Z > .5) = .3
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Illustration with ordinary power and sample size
H0: μ ≤ 150 vs. H1: μ > 150

(Let σ = 10, n = 10,000) Now = SE=.01

let α = .025
POW(T+, μ0 ) = Pr(Test T+ rejects H0; μ0),

The 2SE cut-off is now  150.02!

Again consider POW(μ1 = 153)

Z ~-3. so the POW ~1
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But reaching stat sig with n = 10,000 is horrible 
evidence that (μ1 = 153)

Now = SE=.01

let α = .025
POW(T+, μ0 ) = Pr(Test T+ rejects H0; μ0),

The 2SE cut-off is now  150.02!

Again consider POW(μ1 = 153)

Z ~-3. so the POW ~1
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Explaining a strange remark you may hear:
The higher the power the less likely a statistically 
significant result exaggerates the true mean.

p. 360 SIST refers to Gelman and Carlin

If you use the observed mean M0 to estimate µ, then 
the larger the sample size, the smaller the stat sig M 
is, so it’s not as big as with a smaller sample size

(you should use the lower CI bound to estimate µ

But when the sensitive smoke alarm goes off its less 
indicative of a fire than when the insensitive (small 
power) alarm goes off!


