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Prefa~e 

When it became known that Professor L. J. Savage was visiting Lon­
don in the summer of 1959 and was willing to speak on the applications 
of subjective probability to statistics, it was arranged that he should 
address the Joint Statistics Seminar of Birkbeck and Imperial Col­
leges. The present monograph is based on papers and discussion at 
that meeting which took place at Birkbeck College on July 27th and 
28th. 

The monograph is in three parts. Part I is a somewhat expanded 
form of Professor Savage's opening lecture. Part II gives five short 
invited contributions that had been prepared in advance of Professor 
Savage's lecture. A sixth contribution by Professor D. V. Lindley is 
not reproduced here, but has appeared in expanded form as a paper in 
the Proceedings of the Fourth Berkeley Symposium. The discussion 
recorded in Part III of the monograph is largely concerned with the 
issues raised in Professor Savage's lecture. In editing, the order in 
which the discussion took place has been slightly rearranged and one 
or two additional statements have been inserted. 
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PART I 

Subjective Probability and Statistical Practice 

LEONARD J. SAVAGE 

I. Introduction 

I am here to enlist your active participation in a movement with 
practical implications for statistical theory and applications at all 
levels, from the most elementary classroom to the most sophisticated 
research. Personal contact with so many competent and active statis­
ticians in connection with issues that still seem liable to emotional 
misinterpretation when merely written is very auspicious. Nor could 
one possibly arrange better to stimulate and hear the criticisms 
and doubts that the subjectivistic contribution to statistics must 
answer. 

My own altitude toward the movement has changed materially 
since I contributed to it a book called The Foundations of Statistics 
(Savage, 1954). Though this book emphasizes the merits of the concept 
of subjective (or personal) probabiJity, it was not written in the antici­
pation of radical changes in statistical practice. The idea was, rather, 
that subjective probability would lead to a better justification of 
statistics as it was then taught and practised, without having any urgent 
practical consequences. However, it has since become more and more 
clear that the concept of subjective probabili~y is capable of suggesting 
and unifying important advances in statistical practice. 

It helps to emphasize at the outset that the role of subjective proba­
bility in statistics is, in a sense, to make statistics less subjective. We 
all know how much the activity of one who uses statistics depends on 
judgement, both in the planning of experiments and in the analysis of 
them. For example, we are often counselled by statistical theory to 
choose among the many operating characteristic functions that re­
flect the choice of an experiment and an analysis, or the choice of an 
analysis alone. This choice among availabJe·operating characteristics 
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10 SUBJECTIVE PROBABILI TY AND 

is recognized almost universally to be a subjective matter, depending 
on the judgement of the person, or of each person, concerned. The 
theory of subjective probability shows these necessarily subjective 
judgements to be far less arbitrary or free than they have heretofore 
superficially seemed, and therein lies much of the value of this concept 
for statistics. 

I know little of the early history of subjective probability, though 
early references could surely be found. The earliest clear statement of 
the concept of subjective probability known to me is due to Borel 
(1924). A little more recent but more thoroughgoing was the formula­
tion of Ramsey (1931), which is in no way obsolete. Ramsey was fol­
lowed closely and independently by de Finetti (1937, 1949, 1958), who 
continues to explore the foundations of probability with extraordinary 
competence and thoroughness. Adequate formulation was also given 
by Koopman (1940a, b; 1941). These pioneers in the concept of sub­
jective probability did not write as statisticians, and the application of 
the concept to statistics raises many questions outside the scope of 
their work. 

'There are doubtless many relatively early publications discussing 
the application of subjective probability to statistics, for example, 
those by Molina (1931) and Fry (1934). But the idea was much dis­
couraged for several decades. The book by l. J. Good (1950) is a land­
mark in its statistical reawakening; see also Good (1952). In recent 
years, several quali.fied_statisticians have been interested in more or 
less explicit applications of subjective probability (Anscombe, 1958; 
Hodges and Lehmann, 1952; Lindley, 1956; Wallace, 1959; Whittle, 
1958). A most interesting textbook on statistics for students of business 
that wholeheartedly embraces subjective probability has recently been 
published by Robert Schlaifer (1959). 

Though Sir Harold Jeffreys has not been a subjectivist, his work, 
exemplified by two books (Jeffreys, 1948, 1957), in common with that 
of subjectivists, makes serious use of Bayes's theorem. Moreover, 
Jeffreys's belief in the existence of canonical initial distributions (for 
certain situations) does not keep him from studying also arbitrary 
initial distributions, which are just what subjectivists need. Anyone 
wishing to explore subjective probability will find many valuable 
lessons in the two books ji1st mentioned that do not yet seem to be 
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available elsewhere, and much of what I shat 1 say here is taken directly 
from Jeffreys. 

Today's talk is not axiomatic, and mathematical rigour is not one 
of its objectives, though I shall of course not willfully make mathe­
matical mistakes. It is mainly through examples that I hope to leave 
you more interested in, and more sanguLne about, applications of 
subjective probability to statistical inference. 

By inference I mean roughly how we find things out - whether with 
a view to using the new knowledge as a basis for explicit action or not­
and how it comes to pass that we often acquire practically identical 
opinions in the light of evidence. Statistical inference is not the whole 
of inference but a special kind. The typical inference of the detective, 
historian, or conjecturing mathematician and the clever inferences of 
science are not statistical inferences. Still, it is hard to draw the line, 
and there seems to be nothing to lose and much to gain by keeping the 
more general concept in mind, provided we remember to give special 
attention to those aspects of inference that seem especially appropriate 
to the working statistician. 

2. Subjective probability 

Subjective probability refers to the opinion of a person as reflected by 
his real or potential behaviour. This person is idealized; unlike you 
and me, he never makes mistakes, never gives thirteen pence for a 
shilling, or makes such a combination of bets that he is sure to lose no 
matter what happens. Though we are not quite like that person, we 
wish we were, and it will be important for you to try to put yourself 
mentally in his place. To facilitate this identification, Good (1950) 
ca lied him 'you', and I shall for the moment call him 'thou'. The 
probability that refers to thee is basically a ·probability measure in the 
usual sense of modern mathematics. It is a function Pr that assigns a 
real number to each of a reasonably large class of events A, B, ... , 
including a universal event S, in such a way that if A and B have 
nothing in common, 

Pr (A or B) = Pr (A)+ Pr (B) , 

Pr(A) ~ 0, 

Pr(S) = 1. 
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The extra-mathematical thing, the thing of crucial importance, is that 
Pr is entirely determined in a certain way by potential behaviour. 
Specifically, Pr(A) is such that 

Pr(A)/Pr(not A)= Pr(A)/{1 - Pr(A)} 

is the odds thal thou wouldst barely be willing to offer for A against 
not A. 

The definition just given will not be altogether unfamiliar to you, 
and you will see what it is driving at. Roughly speaking, it can be 
shown that such a probability structure P r, and one only, exists for 
every person who behaves coherently in that he is not prepared to 
make a combination of bets that is sure to lose (de Finetti, 1937, 
pp. 6-9; Savage, 1954). This assertion is not quite correct in that a 
coherent person may justifiably vary his odds with the size of the bet. 
To use this definition effectively, you should try to think in terms of 
bets that are rather small but worth considering. The great advantage 
of this definition over more rigorous ones like the one borrowed from 
de Finetti (1937, pp. 4- 5) for use in my book (Savage, 1954) is that the 
one in terms of odds seems much easier to apply introspectively. 
Without insisting on an axiomatic exploration today, please believe 
that there is considerable rationale behind the concept of subjective 
probability in the various references cited, make an introspective 
effort to apply the concept to yourself, and see with me what it leads 
to in a few statistical examples. 

The concept of subjective probability has serious defects. These can 
be instructively appraised by exploring the close analogy between the 
odds that you would offer on an event, and the price at which you 
would buy or sell ~tome valuable object. Both concepts are afflicted 
with vagueness and temptation to dishonesty. It might be hard for you 
to fix with precision the odds that you would offer that a particular keg 
of nails meets some specified industrial standard or that the moon is 
covered thickly with fine dust; in the same way, it might be hard for 
you to specify the price at which you would sell your automobile or 
buy a specific piece of information about the aurora borealis. Again, 
if the facts about the nails or the moon should be disclosed to you, it 
may become even harder to say honestly what you would have bet; 
similarly, once highly satisfactory prices have been offered to you, it 
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is even harder than before to say honestly what prices would have been 
just satisfactory. 

These difficulties are real, but they must not be allowed to frighten 
us out of trying to use the concepts at all. We can, if we try, do quite 
a bit with them as they are, and we can mitigate some of their inade­
quacies by using common sense and ingenuity. There is the hope that 
distinct improvements will be made on such concepts some day, but 
it seems to me that they are, each in its own line, the best that we have 
today. 

Most people tacitly accept, and I think justifiably, that the concept 
of (equilibrium) price cannot be altogether escaped by anyone who 
would think of his own or other people's economic behaviour. But 
statistical theory has for several decades been largely dedicated to 
trying, futilely, I would say, to escape altogether from the concept of 
acceptable odds, or subjective probability, at least where the analysis 
of data is concerned. In so far as we want to arrive at opinions on the 
basis of data, it seems inescapable that we should use, together with 
the data, the opinions that we had before it was gathered. And I 
believe that' opinion', when analysed, is coterminal with 'odds'. We 
have had a slogan about letting the data speak for themselves, but 
when they do, they tell us only how to modify our opinions, not what 
opinion is justifiable. If my statement of these general principles is 
somewhat dogmatic and abrupt, it is because I trust that examples 
will show you better than abstract arguments how the ingenious 
attempts to build a statistical theory without subjective probability 
have fallen short and how the concept of subjective probability leads 
fo substantial in1provements. 

To my own mind, one of the most striking symptoms of the inade­
quacy of statistical theory without subjective probability is the lack of 
unity that such theory has had. I speak not only of such schisms as 
that between the adherents ofR. A. Fisher and those of Neyman and 
Pearson, but also of the ununified, or opportunistic, structure of the 
theories proposed by both of these two schools. 

For example, according to the Neyman-Pearson school there are 
many different virtues that a system of confidence intervals might 
have. A user of statistics is supposed to try to achieve as many of these 
as possible, and then to choose among them when there is conflict. 
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Typically, this theory leaves the user of statistics with a wide range of 
choices. He is supposed to survey the available operating character­
istics and choose the one that he likes best among those that are at au 
reasonable (that is, admissible or nearly so). This choice is frankly 
subjective, but for certain historical reasons, the dominant school of 
statisticians has not seen that the idea of subjective probability makes 
the choice easier and more systematic than it would at first sight seem 
to be. 

The recommendations of Fisher (1956) present a different kind 
of fragmentation. He counsels us to do one thing when we know 
'nothing', a state of knowledge difficult, really impossible, to defme, 
and to do another when initial probabilities, in some nonsubjectivis­
ticsense, permit application ofBayes's theorem. Even when we kn.ow 
'nothing', Fisher does not present us with a unified method, but tells 
us to use fiducial probability, when the' fiducial argument', the mean­
ing of which is still a little hazy, applies, and to do something quite 
different when it does not apply. 

The fragmentation presented by these theories suggests, though it 
does not prove, that something important is missing, and the appli­
cation of subjective probability does make for unity. The subjectivist 
too will of course exploit the advantages of special situations, but he 
sees these not isolated as islands but as interesting regions merging 
with the rest of the mainland. 

It is sometimes aUeged as a crilicism of the concept of subjective 
probability that science must be objective, that right reason must lead 
from given evidence to one and only one right conclusion. This line 
of thinking does not appear to be valid, fruitful or practical ; see 
Bridgman (1940). Though it has, I think it fair to say, been expressed 
in some form by adherents of the school of Neyman and Pearson, it 
is certainly not essential to that school, which for the most part freely 
admits that the reaction to an experiment depends on subjective 
factors, like choice among operating characteristics. It seems to me 
that such' objectivity' as we enjoy in practice stems from the tendency 
of diverse opinions to converge toward one another under the weight 
of evidence. It must be emphasized that this convergence is non­
uniform, so it cannot be pretended that only a small sphere of opinions 
is left open after the accumulation of weighty evidence. In particular, 
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I believe R. A. Fisher is mistaken when he argues thus: 'This properly 
of increasingly large samples has been sometimes put forward as a 
reason for accepting the postulate of knowledge a priori. It appears, 
however, more natural to infer from it that it should be possible to 
draw valid conclusions from the dala alone, and without a priori 
assumptions' (Fisher, 1934, p . 287). 

It has sometin1es been contended that there are two different kinds 
of statistical theory, one appropriate to economic contexts and another 
to pure science; see, for example, Fisher (1955). In my own opinion, 
this dualistic view is incorrect. At any rate, the applications of sub­
jective probability to be discussed today are equally available to 
economic and scientific applications of statistics. Except that sub­
jective probability is defined as an economic concept, in terms of 
choice among gambles, this talk will scarcely refer explicitly to 
decision, loss, or other economic concepts. When subjective proba­
bility is taken seriously these other concepts, though they rema in 
important, become relatively uninteresting, because in principle the 
solution of every decision problem is simply to maximize expected 
income with respect to the subjective probability that applies at the 
moment of making the decision. This leaves us free, at least in today's 
talk, to emphasize the calculation of posterior, or final, probabilities, 
though io more advanced applications lhe quality of certain approxi­
mations would have to be judged partly on the basis of possible losses. 

3. Bayes's theorem and the likelihood principle 

Write Bayes's theorem somewhat informally thus: 

Pr(Alx) cc Pr(xlA) Pr(A). (1) 

In words, the probability that the unknown parameter has the value,\ 
given the dalum xis proportional to the product of the probability of 
observing x given A multiplied by the initial probability of,\, 'Pro­
portionality' here means proportionality in A regarding x as fixed; if a 
different datum x' were observed, there would typically be a different 

1 constant of proportionality. As is familiar to you all, the various 
probabilities referred to can also be interpreted as probability densities 
where necessary; a more general formula can of course be written, but 
this one seems to have mnemonic value. 
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It is helpful to notice that in usual applications of statistics the 
probability of x given.\ tends to have a quality that might cautiously 
be called 'objectivity'. For example, everyone concerned with the 
experiment may be agreed that x is normally distributed around A 
with unit variance, or that xis a Poisson variable with mean A, or that 
xis normally distributed with meanµ, and variance a2, the parameter 
,\in the last example consisting of the pair (µ,, a2). These probabi Ii ties 
are not really objective; they are expressions of opinions. In practice, 
they are seldom even taken seriously as realistic opinions by experi­
enced statisticians, but are regarded as rather rough practical ways to 
get on with the problem until more realistic assumptions prove 
necessary. For example, if xis supposed to be 15 normally distributed 
physical measurements, there will probably be serious talk by all 
concerned about a spurious, or outlying, observation if the largest 
reading is separated from the second largest by as much as the second 
largest is from the least. This means that all concerned have (and 
therefore presumably always had latent) some doubts about the 
rigorous normality of the sample. Similarly, a sample in which the 
magnitude of the readings is nearly perfectly correlated with the order 
in which they were taken is sure to raise eyebrows. In short, simple 
models do not often fully represent our opinions about the possible 
outcomes of an experiment. Useful though such models are, lbe 
danger of accepting them literally cannot be overemphasized. 

In contrast with the conditional probability of x given.\, the prob­
ability of,\ itself is usually conspicuously personal and vague. In 
principle, anyone can, by asking himself how he would bet, elicit his 
own subjective probability distribution for the velocity of neon light 
in beer. But no one is really prepared to do so with much precision, 
and still less is close agreement from person to person to be expected. 
It is largely because of these difficulties that Bayes's theorem has so 
long been regarded as useless by most modern statisticians. Not only 
are these difficulties often surmountable, but, in my experience, when­
ever an experiment justifies a conclusion the justification can always 
be given in terms of Bayes's theorem. 

In view of (J ), if the initial probability of,\ is ill-defined or not 
agreed upon, the same must be true of the :final probability of A, that 
is, the probability of,\ given x. Nonetheless, there is an important 
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practical sense in which the probability of>. givenx may bemuchmqre 
precise and much better agreed upon than the initial probability of>., 
as will be illustrated in the next section. 

According to Bayes's theorem, Pr(xl/.), considered as a function of 
i\, constitutes the entire evidence of the experiment, that is, it tells all 
that the experiment has to tell. More fully and more precisely, if y 

is the datum of some other experiment, and if it happens that Pr(xl.\) 
and Pr(y j.\) arc proportional functions of,\ (that is, constant multiples 
of each other), then each of the two data x and y have exactly the same 
thing to say about the values of.\. For example, the probability of 
seeing 6 red-eyed flies in a randomly drawn sample of 100 is pro­
portional to >.6(1-A.)94

, where A is the frequency of red-eyed flies in 
the population, whether the experiment consisted in counting the 
number of red-eyed flies in a random sample of 100, or of sampling 
flies at random until 6 with red eyes are observed, or countless other 
sequential variations of these experiments. I, and others, call this 
important principle the likelihood principle. The function Pr(xli\) ­
rather this function together with all others that result from it by 
multiplication by a positive constant - is called the likelihood. 

The likelihood principle flows directly from Bayes's theorem and 
the concept of subjective probability, and it is to my mind a good 
example of the fertility of these ideas. The principle was, however, 
first emphasized lo statisticians by Barnard (I 947b) and Fisher (1956), 
on other grounds. It seems to command more and more assent the 
more you think about it, criticize it, and seek counterexamples against 
it. 

The likelihood principle is, however, in conflict with many his­
torically important concepts of statistics. For example, whether a test 
(or an estimate) is unbiased depends not on the likelihood alone, but 
rather on Pr(xli\) considered as a function of x as well as a function 
of i\. Similarly with the concepts of significance or confidence level. 
For instance, it has been widely believed that the import of such a 
datum as 6 red-eyed flies out of 100 depends on whether the experi­
ment was designed to observe 100 flies or designed to observe 6 
red-eyed flies. An estimate unbiased for either of these experiments is 
biased for the other, and there is a considerable literature on unbiased 
estimates for sequential observation of Bernoullian data, to which I 

B 
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myself have contributed (Blackwell, 1947; D eGroot, 1959; Girshick 
et al., 1946; Savage, 1947). In view of the likelihood principle, all of 
these classical statistical ideas come under new scrutiny, and must, I 
believe, be abandoned or seriously modified. 

The principle has in1portant implications in connection with 
optional stopping. Suppose the experimenter admitted that he had 
seen 6 red-eyed flies in 100 and had then stopped because he felt that 
he had thereby accumulated enough data to overthrow some popular 
theory that there should be about 1 per cent red-eyed flies. Does this 
affect the interpretation of 6 out of JOO? Statistical tradition empha­
sizes, in connection with this question, that if the sequential properties 
of his experimental programme are ignored, the persistent experi­
menter can arrive at data that nominally reject any null hypothesis at 
any significance level, when the null hypothesis is in fact true. Such a 
rejection is therefore no real evidence against the null hypothesis. 
These truths are usually misinterpreted to suggest that the data of 
such a persistent experimenter are worthless or at least need special 
interpretation; see, for example, Anscombe (1954), Feller (1940), 
Robbins (1952). The likelihood principle, however, affirms that the 
experimenter's intention to persist does not change the import of h is 
experience. The true moral of the facts about optional stopping is that 
significance level is not really a good guide to 'level of significance' in 
the sense of' degree of import', for the degree of import does depend 
on the likelihood alone, a theme to which I must return later in the 
lecture. 

There is a class of actuarial problems of considerable theoretical, 
and perhaps also practical, interest that promises to be greatly 
simplified by systematic application of the J ikelihood principle. Here 
is an example. Children come into a clinic for observation at various 
time intervals after the onset of a serious disease and remain under 
observation until they are either withdrawn from the clinic, say by 
arbitrary action of their parents, or until they die, or until they 
survive for five years after the onset of the disease. 

It is desired to estimate the probability of surviving for five years. / 
In practice this is messy data, because there is a more than justifiable 
suspicion that the moment when children are brought to the clinic or 
withdrawn from it has some correlation with the prognosis, but even 
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if this practical point is set aside, the formal problem that remains 1s 
still a complicated one. There has been considerable study of such 
problems based on objectivistic statistical ideas like unbiasedness and 
confidence intervals, and depending on various stochastic models of 
the mechanism that brings subjects into the study and withdraws 
them from it. Recent key references arc the papers of Elveback (1958) 
and Kaplan and Meier (1958). According to the likelihood principle, 
however, these mechanisms have nothing to do with the import of the 
data for the pressure of morta lity and, in particular, for the proba­
bility of surviving for five years. With this hint, new progress on the 
problem is to be expected and many dead ends are recognized. 

To see how the likelihood principle works on a problem of the type 
envisaged in the preceding paragraphs, divide the five-year interval 
into short intervals, and suppose it is known that of x 1 children who 
had survived to the beginning of the ith interval, Y; survived through­
out that interval. If Pi is the probability that a child who survives to 
the ith interval will survive through it, thenp = Ilpi is the probability 
of five-year survival. Irrespective of any model that might be proposed 
to account for the x1, say in terms of parameters~, 

Pr(x1, ... ; Yi, •. ·IP1 •. · .;~ 

= Pr(x1 I ~ Pr(yd P1>X1) Pr(x2 lx1>~ Pr(Yil P2,X2) ..• 

= f(x1 ,. .. ; ~ Ilp{1(I - p;y'-n . 

The function f is irrelevant to the likelihood, so that only the 
observed xi, not the mechanism which produced them, enters into the 
likelihood. 

The concept of ancillary statistic, introduced by Fisher, has been 
difficult to grasp and to define precisely - see, for example, Cox 
(1958a) - but the likelihood principle seems to provide the key. A 
typical important instance of an ancillary statistic is this. If xi and Yi 
are both from a random source, say independent sample pairs from a 
joint normal distribution, and the problem is to study the regression 
of y on x, then it is, everyone seems to agree, legitimate to make all 
inferences as though the xi were not random and the original experi­
mental plan had been to sample the y 1 exactly at these xi. The x 1 are 
here called an ancillary statistic, and the likelihood principle does 
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indeed make it clear that the mechanism that happened to select the 
xi is of no relevance to inferences about the regression coefficient. 
Actually, it is tacit in this argument that pe1fect knowledge of the 
distribution from which the x 1 were sampled would be of no use (or, 
morerealistically, oflittlcuse) in drawing conclusions about the regres­
sion coefficient. This is a subjective matter and can therefore vary from 
problem to problem and person to person. One might, for example, 
have some strong special reason to believe that if the xi are broadly 
(or narrowly) distributed the regression coefficient is likely to be large. 

The likelihood principle always supports the appealing conclusions 
that have been based on ancillary statistics. But the likelihood 
principle leads to the simplifications almost automatically, whereas 
ancillary statistics are discovered only by ingenuity and insight. An 
important reason for this is that one problem can have many ancillary 
statistics on a par with each other. For a striking, if academic, example, 
suppose x and y are normal about 0 with variance 1 and correlation 
p. Then x and y are each by themselves irrelevant top, and each is an 
ancillary statistic for the total observation (x,y) by anycriterionknown 
to me. Inclusion of several pairs (x;,Y;), rather than one only, makes 
no essential difference. 

4. Precise measurement 

One of the most interesting and satisfying applications of subjective 
probability is that of precise measurement. This is the kind of measure­
ment we have when the data are so incisive as to overwhelm the initial 
opinion, thus bringing a great variety of realistic initial opinions to 
practically the same conclusion. Put yourself - not an over-idealized 
person - into a certain statistical situation of textbook simplicity. The 
one l propose is humble but, for me, instructive. Whoever .finds it 
frivolous can supply something graver: the weight of a nougat or of 
the earth, the melting point of a new compound, or the sex-ratio at 
birth in post-war Germany - a good example, because sample fre- ( 
quency here is so like a normal measurement of variance t:N- 1• 

You are holding a potato, or some other irregular object, in your 
hand and have need to know something about its weight. You can, in 

-
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principle, elicit your own initial probability density a(A) fol' the nn­
known weight of the potato, but in practice the self-interrogation 
may not work very well and you may be very vague about a(A). There 
is a temptation, under these circumstances, to say that ex(>.) does not 
exist or that you know nothing about the weight of the potato. 
Actually, it has proved impossible to give a satisfactory definition of 
the tempting expression 'know nothing'. Still more, you do know a 
good deal about your opinions about the weight of the potato, and 
these can be quite well expressed in terms of partial specifications of 
a(,\). If, for example, it were necessary to mail the potato without 
weighing it, you could put on enough postage to be reasonably SW'e 
that it would not be returned to you nor be 500 per cent overpaid. 

More important, you are almost sure to have a certain kind of 
knowledge about ex(A), which has seldom been mentioned explicitly, 
but which will be very useful after you have a chance to weigh the 
potato on a good balance. To illustrate, suppose that you found out, 
as a result of some experiment, that the weight of the potato to the 
nearest gram was either 146 or 147 gm. Given this knowledge, you 
would probably be willing to accept odds only slightly more favour­
able than one-to-one in favour of either of the two possibilities, 
146 gm or 147 gm. This may be interpreted to mean that, for you, the 
average value of ex(>.) near 146 is almost the same as its average value 
near 147. Continuing along this line, you might arrive at the con­
clusion that a(.\) varies by at most a few percent in any 10-gm interval, 
included between, say, 100 and 300 gm. You might also conclude 
that ex( A) is nowhere enormously greater, say 1000 times greater, than 
even the smallest value that it attains between the bounds of 100 gm 
and 300 gm. 

Armed with such knowledge, what could you conclude after weigh­
ing the potato on a tried and true balance known to have a normally 
distributed error with a standard deviation of 1 gm? Bayes's theorem, 
in this context, can be written 

ex(Ajx) cc cfo(x->.) rx.(A), (2) 

where 

1 1 • 
c/>(z) = - - e- ,z-. 

v(27T) 
(3) 
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At first sight, (2) may seem inapplicable, because you know so little 
about o:(>.). But suppose, for definiteness, that x = 174·3 gm. As 
Fig. 1 shows, the function </>(174· 3 - >.) is almost zero outside the 
interval 174·3±5; the function o:(>.) varies by at most a few per cent 
inside that interval and is never enormously larger outside the interval 
than it is inside of it. Under these circumstances, the product on the 
right side of (2) is well approximated for many purposes by 

<f>(l 74·3-i\)o:(l 74·3). 

cl> (174 ·3- )..} 

174·3 ?. --

Fig. l. Prior probability density ex(.\) and li.kelihood if> (174·3 -A). 

The probability density o:(A) and the likelihood </>(174·3-A) are not 
drawn to the same vertical scale. Such quantities need not generally 
even be of the same dimension; with Poisson data, for instance, one 
would be probability per unit frequency, the other sin1ply probability. 
Therefore, oc(Ajx) is a probability density in ). that is well approxi­
mated by some constant multiple of <f>(x-i\), but the only such 
multiple that is a probability density in >., that is, the one that is 
suitably normalized, is clearly <f>(x-A) itself. Thus, after the weighing, 
your opinion about). is expressed to a good degree of approximation 
by saying that i\ is normally distributed arotmd 174·3 gm with a 
standard deviation of 1. Though this is much the kind of conclusion 
that is usually ridiculed in the statistics classroom, I hope you now feel 
that, in the presence of reasonable assumptions about your own 
initial subjective probability, it is not ridiculous but true. 

I 
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Note well that the example depends on two properties of a(.\), its 
near-constancy in the neighbourhood of the value of the observed 
value of x, and the relative moderateness of ex(,\) far from that value. 
Both these properties of course refer to empirical facts about you and 
the potato. If, for example, you had weighed a potato yesterday that 
you thought might quite I ikely be the same potato that you are weigh­
ing today, ex(.\) has a more or less sharp peak. If this initial peak lies 
close to x, then the assumption of near uniformity of ex(,\) in the 
neighbourhood of xis violated; if the peak falls 4 or 5 gm away from 
x (and if you are all but certain that this is indeed the potato that you 
weighed yesterday), then the assumption of moderate behavioui- of 
ex(/.) distant from x fails to be satisfied. 

The argument that led to c/>(174· 3 -/.) as your approximate final 
probability density for tire weight of the potato is given and greatly 
generalized by Jeffreys (J 948, section 3.4). But for the most part, 
especially in the reference just given, as opposed to Jeffreys (1957), 
Jeffreys would adopt a somewhat different line of thought, saying 
that, if you know nothing about the potato, ex(,\) should be taken to be 
literally a constant. This is sometimes objected to on the grounds that 
such an ex(/.) cannot be normalized; it is not literally a probability 
density. That objection does not seem terribly important to me be­
cause there do exist finitely additive probability measures corre­
sponding to the idea of a uniform distribution on the whole line. To 
me, a more serious objection is that such a uniform distribution does 
not really represent the initial opinion of anybody, and surely does 
not represent an opinion that ought to be held by everybody, even 
apart from our sure knowledge that the weight of the .potato is 
positive. This approach of Jeffreys, in effect, puts forward a valuable 
approximation as an exact conclusion. An interesting discussion of 
these ideas is given by Good (1950, p. 51). 

Following, and in a few cases extending, Jeffreys (1948), many 
classical statistical situations can be treated in the spirit of the example 
about the potato. If a variance o 2 is to be measured on the basis of a 
statistic s2 with n degrees of freedom, your final distribution of o2 

will (under favourable circumstances) be like that of ns2/ x?i. where the 
data n and s2 are of course regarded as fixed. This can be extended to 
the corresponding conclusion about a set of covariances in terms of 
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Wishar1 's distribu<ion. If the parnmete,., µ and u 2 ofa 11orma I dis(,.;. 
but ion are to be joinlly eslimated from X, and s2 based on,, observa. 
lions (and therefore ,, - 1 degrees of freedom), then u

2 
is distributed 

as before with n - 1 in place of n, and •'(fl-ii)/ u is, always speaking 
approximately, distribu<ed independen<ly of u with a standard normal 
distribution; putting <hose facts together, the approxima1e final 
distribution ofµ is like <hat of ii+,,-• st•-

1
, wherex, "· s play 1 he 

role of constams. This example generalizes to lead <o a <heory of 
reg•-essio11 and the analysis of variance fo1·mally similar to, but 
intellectually dill°et'cn t from, <he usual <heory. Standard F d istribu<ions 
arise in connection with <he distri but; on of the ratio of two unknown 
va1"iances, beta distributions in conneclion With the estimation of a 
frequency from llernoullian data, and gamma distributions in con. 
nection With the estimation of a Poisson parameter. 

SVBJECTI VE l'ROBABfLITy AND 

The llehrcns-Fishe1· p1·obfcm provides a particularly striking illus­
ti·ation of the theoiy, according to which the final distribution of two 
normal means wh.,, the means and va.iances arc a II grossly nnknown 
is that of a C<:rtai n linear combination of independent t-varia bles: this was shown iil effect by Jeffreys 0948). 

This is f orma/ly just the solution <hat has always been championed 
by Fisher. Fisher would say that it gives the exact tiducial probability, 
but I say only that it gives satisfactory approximate probabilities 
under suita blc circumstances. The solution ;, not in even •PPcoximate 
agreement with confidence interval ideas; see Wallace (I 959). In many 
cases, the theory of p1·ecise measurement tends to coincide in this way 
with the theory of liducial probability, but the theory of precise 
measurement is not coterminal with the theory of fiducial Prnbabi/ity 
(whatever the exact interpretation of the latter may be), because the 
theory of precise measurement is not deJ>Cndent on the existence of 
sufficient statistics in the same sense as <he theory of flducia/ Prob. 
abi Ii ty is and because the thco1·y of precise measucement deafsas well 
with discrete data as it does with continuous data. 

The theory of precise measurement leads to a good underntanding 
of the Problem of csti ma ling the ratio µ, / µ.

2 
of two mea11s from data ( 

of the form x,, x,, ands, 01· the closely related problem of estimating 
the dit-ection of the vector (µ,, µ.2). The approximate answer adduced 
here agcees with what I underntand to be the one produced by the 

= 

--
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fiducial argument. This was given (for the problem of estimating the 
direction of the vector) by Creasy and confirmed by Fisher, who were 
in disagreement with Fieller; sec Fieller et al. (1954). 

The theory contributes to problems like the estimation of the 
difference of Poisson parameters or of variances, where convolutions 
of gamma distributions are invoked. However, these problems are 
often such that the difference is often known to be positive, which 
may well come into conOict with the hypotheses about gentle be­
haviour of the initial distribution necessary for the application of the 
theory of precise measurement. In such cases the problems must be 
considered anew and cannot be expected to have all of the advantages 
of precise measurements. Judging from experience with a problem 
that seems analogous to me, namely that of inferring an upper bound 
on a danger from a perfect safety record, even these less satisfactory 
situations can lead to useful inequalities. If a complete approximate 
final distribut ion does not occur in such problems, it is because the 
specification of the problem does not justify precise conclusions. 
Any theory- confidence intervals, fiducial probability, logical prob­
abilities - that pretends to produce exactness where it is unjustified 
is a false servant. 

5. Initial and final precision 

With our great emphasis on operating characteristics, on how an 
experiment can be expected to perform, many of us have tended to 
forget the distinction between the precision that was to be expected 
from an experiment before il was performed and the precision actually 
yielded by it when it was performed. Theconfusionhas been reinforced 
by the fact that for certain familiar kinds of experiments, the distinc­
tion really docs vanish. The tendency to obliterate the distinction 
between initial and final precision is particularly natural to those 
objectivistic theories of statistics that officially refuse to discuss final 
or terminal opinions. Nonetheless, objectivists of both schools have 
pointed out the distinction in certain contexts. 

A striking example concerning the estimation of the median of a 
uniform distribution of known range is sometimes discussed; see, for 
example, Lehmann {1959; p. 7, ex. 7) and the much earlier paper by 
Welch (1939). 

,., , 
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We have been accustomed to think that if an estimator has a small 
mean square deviation, then an estimate resulting from the applica­
tion of this estimator is in some sense trustworthy, but this is not true 
in general. An example of an estimator that is ordinarily trustworthy 
is the average of observations from a normal distribution with unit 
variance. These observations ordinarily constitute what was called in 
the last section a precise measurement of the unknown mean of the 
distribution, and there is then strong reason to suppose that the true 
mean µ lies close to the sample mean x; and, in all cases, a sample 
from this normal family affects the final opinion only through x. 

On the other hand, the natural estimator for the median of a uniform 
distribution of unit range is the mid-range, that is, the average of the 
maximum and minimum observations. This estimator has a very small 
mean square deviation for large sample sizes, about tn- 2, and under 
usual initial opinions it can we! I claim to be the best possible estimator. 
But if, by accident, the range of the sample is very narrow, then the 
sample leaves grave doubts as to the position of the population 
median. In fact, the final distribution after such an observation is 
simply the initial distribution truncated to the interval from the 
maximum - t to the minimum + t. If, for example, the maximum 
observation is 3t and the minimum 2t , the.median of the uniform 
distribution of unit range must be at least 3i--1 + i = 2{: and at most 
2!· + I - l = 3; study of the likelihood shows that this is in fact all 
that the sample has to convey about the location of the median. If 
the initial distribution is sufficiently diffuse, then the final distribution 
is nearly uniform in the interval 2! to 3, no matter how large the 
sample was. The fact that the mean square deviation of the mid-range 
estimate is small corresponds to the fact that the final interval of 
nearly w1ifor01 uncertainty is almost always small, but this interval 
can occasionally be of almost unit length, in which case the sample is 
a relative failure. 

Many other translation families exhibit much the same phenome­
non. Consider the double exponential (or Laplace) distribution with 
density texp(- Ix- µ I). The maximum likelihood estimate of the / 
parameterµ is here the median of the sample. For large samples, its 
variance decreases nearly proportionally to l/n, and the Pitman 
(1939) estimate has a slightly smaller mean square deviation. Once 
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more, this does not mean that an observation of a large sample for 
this distribution necessarily gives a sharp indication of the position 
of the medianµ.,. If, for example, that there were two hundred obser­
vations of which one hundred fell beneath - I and the other hundred 
above + 1, the likelihood function would be a constant throughout 
the interval -1 to + 1, and while the data may give strong evidence 
that the true value ofµ, is somewhere between the IOOth and I OJ st 
observation, it gives no clue at all as to where in that interval µ, is. 
The corresponding example (Fisher, 1934) for an odd sample size is 
not much less striking. The Cauchy distribution produces similar 
phenomena, and extensive observation of a Cauchy distribution can, 
very rarely to be sure, leave us with a sharply bimodal final distribution 
with the modes far separated from one another. 

The examples just given are closely related to, and can be reformu­
lated in terms of, a certain phenomenon about confidence intervals. 
For example, for the uniform distribution, the usual ana logy between 
the theory of testing and confidence intervals suggests that the mid­
range of the sample ± €11 would be a good confidence interval for the 
median 1;,, with the constant €11 su itably chosen. This is indeed a 
confidence interval, but it has distressing properties. If the range of 
the sample is in excess of 1 - 2€"' then we know with certainty that 
the interval contains the true value of µ,, which was more than was 
bargained for. If the mid-range is unusually small, there is good 
evidence that the interval fai ls to coverµ,. This evidence is meaningful 
even to objectivists of the Neyman-Pearson school, for it is easy to 
calculate that anyone who offers to pay 19 to I if the confidence inter­
val misses the true value conditional on the mid-range's being un­
usually small stands to lose money. Even the system of confidence 
intervals based on what is technically called the best unbiased test of a 
null hypothesis about the mid-range has much the same unreasonable 
properties (Welch, 1939). 

There is some literature, mostly objectivistic, devoted to this 
phenomenon of confidence intervals that are, so to speak, not con­
ditional confidence intervals. One reference, leading to others, is 
Wallace (1959). So far as problems of translation are concerned, 
confidence intervals proposed by Pitman (1939) meet the situation, 
and, in fact, agree with intervals that would be generated from the 
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theory of precise measurement by taking intervals from the centre of 
the approximate final distribution with specified probability. 

A prominent instance in which the outlook of the Neyman-Pearson 
school led to neglect of the difference between precision promised and 
precision delivered is the Stein two-sample procedure (Stein, 1945) 
for producing a confidence interval offixed length, say one, for normal 
distributions of unknown mean and unknown variance, as has been 
mentioned by Lindley (1958). The general idea here is to use a pilot 
sample with mean x' and sample standard deviations' and then to 
adopt a total sample size N that promises to be large enough to ensure 
the required precision. If x is the mean of the whole sample, then 
(except for slight approximations) x ± i is a confidence interval at the 
required confidence level and the problem is formally solved. Stein 
actually proposed certain refinements to take account of the dis­
creteness of the integers and of the possibility that the first sample is 
already more than adequate. These refinements need not detain us 
here, but in common sense they are steps in the wrong practical 
direction, as Stein points out, for they waste data to avoid justifying 
a conclusion of more precision than is required. Now, if the Stein 
procedure is carried out, and if it happens, as it occasionally will, 
that the standard deviations of the whole sample is much larger than 
s', then there is good evidence that the interval x± t has missed its 
mark. Once more, the evidence can be called objective. The ingenious 
procedure that was widely acclaimed in the statistical climate of 1945 
has since been seen by frequentists, including its author, and by 
personalists to have the serious defect just pointed out. 

Incidentally, the concept of precise measurement immediately 
suggests a good practical solution to the kind of practical situation 
that gave rise to Stein's problem. If you want to weigh a potato on a 
balance of highly unknown standard deviation sufficiently frequenlly 
to be able justifiably to give odds of 99 to 1 that the true weightµ, of 
the potato lies in an interval 0· 1 gm long, the natural and I believe the 
right thing to do is this. Simply weigh the potato repeatedly until you 
find that the middle 99 per cent of your final (or better, intermediate) 
distribution has a length of 0· 1 gm. This is practical, because after 
the first four or five weighings, your intermediate distribution will 
typically be well approximated with the aid of the I-distribution of 

r 



STATIST J C AL PRA C TI C E: SAVAGE 29 

11-1 degrees of freedom. An interesting objectivistic discussion of 
this and related methods is given by Anscombe (1954). 

6. Sharp null hypotheses 

To give you an illustration of the application of subjective probability 
outside of precise measurement, I shall say something about testing 
sharp null hypotheses, mainly in the form of an allegory, though I 
still know too little about this application of subjective probability. 

At least three different situations are commonly crowded into a 
common Procrustean bed in the name of testing a null hypothesis. 
There are still other situations that used to be confused with these but 
that are less often now (Bahadur and Robbins, 1950). These three 
situations have been.poorly distinguished, when distinguished at all, 
because the real differences among them are largely differences in 
initial probabilities, about which objectivists have no adequate 
vocabulary. Let me illustrate by telling three versions of the legend of 
King Hiero's crown. 

In all three versions the king knows or suspects that his goldsmiths 
have adulterated the gold of bis new crown. Archimedes, under de­
lightful circumstances, hits on the idea of determining the density of 
the crown by weighing it and a specimen of pure gold in air and water. 
It does no important violence to the story to suppose that Archimedes 
bas in effect measured a number,\, with the error of measurement 
normally distributed with standard deviation a about,\. The crown is 
either unadulterated, denser than pure gold, or less dense than pure 
gold according as,\ = 0, ~ > 0, or,\< 0. I choose to forget here that 
the presumed adulterant was silver, which would lighten the crown; 
retaining that feature would lead to one-sided tests. 

It is odd, though not unthinkable, that Archimedes and the king 
should know a, but this helps keep the example down to essentials. 
Archimedes may in fact have made and averaged many measurements. 
Why he made just the number he did is another story, but once he 
stops, the average is in effect a single measurement as postulated. 

Depending on his sow·ce of information and on his objectives, 
Hiero might be imagined to have one of the following sorts of initial 
attitudes, among others. 
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Version 1. The king is sure that there has been cheating, and his 
opinion about its extent is diffuse with respect to Archimedes's 
measurement. The king would like to decide whether the crown is 
denser, or less dense, than gold. But he is willing and free to abstain 
from deciding if the evidence is inconclusive. 
Version 2. The king is sure that there has been cheating, but his opinion 
is not diffuse. Rather, he feels with considerable confidence that 
l.\I < 2a. Once more he would like, if possible, to decide whether 
the crown is denser or less dense than gold. This version is the most 
difficult and the one of most prominence in realistic statistical practice 
and thinking. 
Version 3. The king attaches some credence, be it large or small, to 
the possibility that there has been no cheating (A= 0), and his opinion 
about the extent of the cheating, conditional on there being some, is 
diffuse with respect to the measurement. He wants to hang the gold­
smiths if they are at all guilty, otherwise not. 

According to many objectivistic textbooks, the king's response to a 
measurement x should be about the same in all three versions. He 
should, it is implied, select some small probability ex, say ex = 0·05, 
0·01, or 0·00 I, at his discretion. He should then compute the prob­
ability that t = x/a would be at least as large as the observed value if 
A were 0, that is · 

+l tl 

1- J </>(z)dz = <P(- ltl)+{l-<P(ltl)} 
-ltl 

= 2<1>( - ltl). 

If this value is less than his ex, he should reject the null hypothesis, 
otherwise accept it. For Versions 1 and 2, rejection means to take the 
sign of x seriously as an indication of the sign of.\. For Version 3, it 
means to hang the goldsmiths. 

An alternative textbook doctrine that might be offered is not to 
reject at any :fixed ex but to regard a(t) = 2- 2<1>(j t D as some kind of 
measure of the doubt the king should have were he to reject the null 
hypothesis. You shall see that both objectivistic doctrines are inap- ( 
propriate to Version 1 and especially inappropriate to Versions 2 and 
3. No version for which they are appropriate is known to me. 

In Version 1, the king feels rather sure before making the measure-
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rnent that he will obtain practically unequivocal information about 
the sign of,\, which is what he wants to know in this versi9n. He might, 
for example, be willing to bet 100 to 1 that lxl will be found to exceed 
4a. If lxl is in fact that large, the principles of precise measurement 
will leave the king little doubt about the sign of,\, though (under 
typical circumstances) it would be an abuse of those principles to 
attempt thus to measure lhis small doubt by other than a rough upper 
bound. If, however, x does happen to fall within, say, 3a or 4a of 0, 
the king may, under favourable circumstances, find that <P(- lti) is 
about the probability for him that the sign of,\ is not that of x . Note 
that<!>( - It I) is not !X(t) but t!X(t), so that neither textbook doctrine is 

quite appropriate to Version 1. 
· In Version 2, the king rather expects to find x with.in 2a of zero. 
If this does in fact happen, his terminal distribution of A, and in 
particular his terminal probability that ,\ is positive, depends quite 
sensitively on the behaviour of his initial distribution of,\ near,\= 0. 
This distribution was not adequately specified in the description of the 
problem, and, in particular, it may be very asymmetrical. Still more, 
the king may not know his own mind well enough to specify ade­
quately the behaviour of his initial distribution of,\. In this case, the 
experiment will inescapably leave him in a quandary. Any theory that 
pretends to do more, to reach a conclusion about the sign of A without 
using the king's initial opinion, goes too far. What can be hoped for 

is useful inequalities. 
Version 3 has an interesting theory for which we are indebted to 

Jeffreys (l.948), who presents both special cases and general theory. 
Lindley also discovered a broad generalization of this theory some 
years ago, which will be published shortly (Lindley, 1961). 

Let I be the king's initial probability that ,\ = 0. Let 17(,\) be his 
(diffuse) initial density for,\ given that,\# 0. The corresponding final 
quantities I' and 17'(,\) are determined through Bayes's theorem by 

c . c 
I' = - ef>(x/a) I = - cp(t) I 

a a 
(1) 

and 
C (x-,\) _ ! ' 17'(,\) = -;, ef> -;;- fa( A). (2) 



32 SUBJECTlVll PROB A Bl LITY AND 

Integrate (2), recalling that 7T is supposed to be diffuse relative to ¢, 
to conclude that 

l' ~ C7T(x) !, (3) 

provided tis not enormous; otherwise, there is strong but ill-measured 
evidence of guilt. 

The division of (1) by (3) yields an approximation for the final odds 
in favour of innocence(,,\. = 0), 

I' </>(t) I I 
- ~- ·-- ·- · 
/' a 71(X) J 

(4) 

It is gratifying to find that the terminal odds area multiple of the initial 
odds. The one olher aspect of the ki11g's initial opinion about A. that 
enters is 7T(x). Objcctivistic doctrine would suggest that the only 
thing important about the measurement for the king's decision should 
be the 'double tail-area' ix(t). Actually, it is not through ix(t) but 
through the density </>(t) that t enters, and a plays a role as well as t. 

Precedence for the importance of u here can probably be found in 
the writings of objcctivists, but, broadly speaking, it is in contrast with 
objectivistic theorizing. 

The king will hang the goldsmiths if I;/l' is large enough. He may 
be hard pressed to tell himself how large is large enough or to evaluate 
the personal factor I/ (71(x)l). This lack of self-knowledge may leave 
him in a quandary, but often t and uwill be such that very rough values 
of the personal factor and the critical odds suffice. Also, in real life, 
the king might be able to make a new measw·ement if in doubt or to 
accept the risk of excusing slight guilt as relatively unimportant or to 
do still other things that would ameliorate his dilenuna. 

The general theory developed by Jeffreys and Lindley for problems 
like Version 3 is adequate to deal with nuisance parameters. Various 
double dichotomy problems now normally treated by x2 with one 
degree of freedom are a good testing ground for this theory; some 
exploration is carried out by Jeffreys (1948, sections 5.11-5.14; 
1957, section 3.6). 

One thing that I have tried to convey in this section is what seems to 
become of the theory of testing hypotheses when it is studied through 
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subjective probability, but this is not a topic that I could cover fully 
here, even if there were space. Jn particular, it would be chaUenging 
to offer a clear analysis of' shotgun tests'. Friends have emphasized 
that real life seems to offer few problems at all like Version 3; I agree 
and conclude, with those friends, that hypothesis testing is not nearly 
of such widespread appropriateness as many who routinely use 
statistics seem to think. 

7. Conclusion 

Every topic in statistics ought to be reviewed in the light of the 
concept of subjective probability, but certain broad problems seem 
particularly important at present. 

First, there are many situations like precise measurement, except 
that an infinite (or at least unlimited) number of parameters are 
involved, and typically we do not expect to have enough information 
to measure all of them precisely but only to measure precisely a few 
functions of the infinite set of parameters. The problem of five-year 
survival mentioned in section 3 is a case in point. Another, and a 
typical problem of non-parametric statistics, is to measure the median 
or other percentage points of a largely unknown distribution function. 
Whittle (1957, 1958) has recently applied subjective probability lo 
curve-fitting and to the estimation of the autocorrelation function of 
a stochastic process. Both these problems are further illustrations of 
what I meant to suggest by an unlimited number of unknown para­
meters, and it would be good to see the impetus given by Whittle 
followed up. 

Many feel intuitively that there are circumstances that do call for 
application of the traditional tests, like F tests and x2 tests. Where, 
if anywhere, this intuition is justified, I am confident that it will not 
be found at variance with the concept of subjective probability, but 
the situation has not yet been properly analysed and explored. 

Again, though we all feel sure that randomization is an important 
invention, the theory of subjective proba bility reminds us that we have 
not fully understood randomization. It is not enough to say something 
like this: 'If you randomize here, you are very unlikely to make a 
mistake.' It can happen that when the randomization is done, the 

c 
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experimenter sees that he has made a mistake, that is, sees that the 
experiment called for by the randomization is inappropriate. This 
point has been studied by several who probably think of themselves 
asobjectivists(Grundyand Healy, 1950; Jones, 1958; Yates, 1951 a, b). 
Jn particular, randomization could accidentally closely correlate any 
variable that has not been controlled by stratification or some such 
device, with one of the treatments. For example, we might accidentally 
choose at random a la tin square with the treatments running in regular 
slanting lines across the field. It would usually be most ill-advised to 
carry out such an experiment in which treatment is highly correlated 
with a possible gradient in fertility merely because this bad design had 
arisen at random. 

The problem of analysing the idea of rand~mization is more acute, 
and at present more baffling, for subjectivists than for objectivists, 
more baffling because an ideal subjectivist would not need randomiz­
ation at all. He would simply choose the specific layout that promised 
to tell him the most. The need for randomization presumably lies in 
the imperfection of actual people and, perhaps, in the fact that more 
than one person is ordinarily concerned with an investigation. The 
imperfections of real people with respect to subjective probability are 
vagueness and temptation to self-deception, as has been explained, 
and randomization properly employed may perhaps aUeviate both of 
these defects. · 

Other problems that seem to concern self-discipline are those of 
dealing with outlying observations and with empirical smprises gen­
erally. Here again, subjective probability gives a simple solution in 
principle. For example, an observation ought to be regarded as due 
to agrosserrorifand only if Bayes's theorem tells us that it probably is, 
but vagueness and temptation make it particularly difficult to apply 
this simple maxim. Again, self-discipline is often enforced by using 
part of the data to suggest ideas and the rest of it to confhm these 
ideas. This process is not really easy to understand and appraise. In 
particular, there seems to be little cogent advice as to what fraction of 
the data should be used for exploration and what fraction for confirm­
ation. Half and half is often suggested, but without particularly 
good reason. One interesting discussion of this problem of hindsight 
is by·Simon (1953). 

r 
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In this lecture, l have emphasized applications of subjective prob­

ability that do not depend sensitively on many details of the initial 
probabilities. Such robustness is important when it occurs, but we 
must remember that statistics presents many problems that are not 
robust in this sense. The problem of choosing a sample size (and some 
other design parameters) is an especially conspicuous example. Even 
in these cases, it is, I believe, far better to use the concept of subjective 
probability to order our thoughts than to try lo make the necessary 
choices by unformalized intuition. 

I hope that even though you may not yet fully share my enthusiasm, 
you have come to feel that subjective probability promises to make 
important contributions to statistical theory. The improvements are 
so simple and far-reaching that they are by no means confined to 
academic theorizi11g but should have an immediate impact on our 
teaching and consulting. 



PART 11 

Prepared Contributions 

PROFESSOR M . S. BARTLETT 

I understood that this conference was to be informal in character, and 
I have not prepared any detailed statement of my own views, which 
have been expounded before on various occasions; see, for example, 
some of the papers in my Essays (Bartlett, 1962). 

What one hopes for in a conference of this kind is an understanding 
of differing viewpoints, and if possible some reconciliation of them. 
Let me suggest therefore that divergent opinions be honestly recog­
nized by all the interested parties as, in inference at least, no one 
method can be claimed to be tbe only method that people do or should 
use. I have listed various definitions of statistics and statistical infer­
ence either directly or indirectly implied in the rather miscellaneous 
collection of quotations given below, which I frankly admit are highly 
selected and biased, and make no claim to comprehensiveness. They 
do, however, support my claim that we have to recognize many 
antagonistic points of view, which I will try to summarize as follows 
(the a and b versions of each pair of statements being in some sense 
or other rival versions): 

l a Statistics are facts or observations, not necessarily about the 
Stale. 

lb tTistoricaily, both in science and in popular language, statistics 
are about aggregates or populations of individuals or events, 
and theix properties as a group or on the average. 

2a Statistical inference is inductive inference. 
2b Statistical inference is inference from statistics. 
3a Many people, but not all, advocate a statistical or frequency 

theory of probability. 
3b Many people, but not all, advocate the explicit use of other, 

e.g. prior, probabilities and possibly utilities. 
36 

( 
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(i) Some of these regard these probabilities as personal and 
subjective. 

(ii) Some claim they are impersonal and objective. 

Having noted these various approaches, l shotLld perhaps indicate 
briefly my own position. I would myself emphasize the historical 
association of statistics with populations and aggregates, and note 
that statisticians who recognize this character of statistics wiU neces­
sarily recognize the frequency theory of probability. This bifurcation 
of probability theory, which has been recognized by many writers, 
including philosophers, such as Carnap (1950), naturally affects the 
way in which statistical inferences are made, because statisticians, such 
as myself, who favour the frequency theory prefer to base their argu­
ments as far as possible on such generally accepted probabilities and 
not on the so-called subjective or 'degree of belief' types of prob­
ability. The fact that we avoid as far as possible explicit use of such 
probabilities does not imply that our inferences are any the less 
rational; we simply prefer to keep the two types of probability 
separate. 

Q uotations 

'This science (the theory of probability) has for its main task the 
study of group phenomena, that is, such phenomena as occur in col­
lections of a large number of objects of essentially the same kind.' 
(Khinchin, l 949, p . I.) 

'It dawns upon us that the individual case is entirely devoid of 
interest, whether detailed information about it is obtainable or not, 
whether the mathematical problem it sets can be coped with or not. 
We realize that even if it could be done, we should have to follow up 
thousands of individual cases and could eventually make no better 
use of them than compound them into one statistical enunciation. 
The working of the statistical mechanism itself is what we are really 
interested in.' (Schrodinger, 1944.) 

'The science of statistics is essentially a branch of Applied Mathe­
matics, and may be regarded as mathematics applied to observational 
data.' (Fisher, 1925, p. 1.) 
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'In terms of Fisher's definition I would describe statistical theory 
as a mathematical theory which relates to observational data arising 
from a physical background of chance.' (Bartlett, 1940.) 

'By statistical data and statistical phenomena I refer to numerical 
and quantitative facts about groups or classes of individuals or events, 
rather than facts about the individuals themselves .... 

Now we can try to see what is meant by statistical. inference. It is 
inference from statistical data, and makes use of its own intrinsic 
theoretical concepts associated with the regularity properties of 
statistical groups or populations, and formulated mathematically in 
terms of the theory of probability.' (Bartlett, 1962; taken from 
unpublished lecture of 1956.) 

'In this name [mathematical statistics], "mathematical" seems to 
be intended to connote rational, theoretical, or perhaps mathematic­
ally advanced, to distinguish the subject from those problems of 
gathering and condensing numerical data that can be considered apart 
from the problem of inductive inference, the mathematical treatment 
of which is generally relatively trivial. The name" statistical inference" 
recognizes that the subject is concerned with inductive inference.' 
(Savage, J 954, p. 2.) 

' In recent years, Statistics has been formulated as the science of 
decision making under uncertainty.' (Chernoff and Moses, 1959, 
preface.) 

'I shall call them " Bayes" probabilities because, frequency or not, 
they are the ones needed for insertion into Bayes's theorem. Savage 
argues that they are" personalistic ", that is, they are a property of the 
individual and not of society. I would dispute this myself, and agree 
with Jeffreys in saying that in scientific questions they are objective. 
They only differ between individuals because the individuals are 
differently informed; but with common knowledge we have common 
Bayesian probabilities. We can ignore this side-issue in the present 
account.' (Lindley, I 958.) 

'Subjective expectations, valuations and preferences and their 
changes from person [to person] or in the course of time can and ( 
should be investigated by means of" objective" st·atistical methods. 
Trying to use them as a basis of statistics is like trying to gauge a fever 
thermometer by means of the patient's shivers.' (van Dantzig, 1957.) 
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PROFESSOR G. A. BARNARD 

Statistical inference is that part of scientific inference in which 
quantitative measures of uncertainty are employed. If we leave on one 
side the purely philosophic doubt that should perhaps be in our minds 
at all times, then not all scientific inference is uncertain, and not all 
uncertainty is quantifiable with concepts now available. So statistical 
inference is a proper part of scientific inference, not the whole of it; 
though with the evolution of new concepts to measure new kinds of 
uncertainty, the domain of statistical inference may grow without 
limit. If, as the results of Lowenheim and Godel teach us, no formal 
limit can be set to valid modes of purely mathematical reasoning, so 
a fortiori one would expect no formal limit to valid modes of the 
wider field of statistical reasoning. 

Some like to use the word probability to cover all quantitative 
measures of uncertainty, distinguishing the different kinds by adjec­
tives such as 'subjective', 'physical', 'rational', 'pistimetric ', and 
so forth. Others, including myself, feel that the differences are so 
important, and require such emphasis at the present time, as to be 
best dealt with by the use of different nouns, such as 'likelihood', 
•acceptability', and ' long-run frequency', as weU as probability itself. 
But we surely should not devote much time to a purely verbal dispute 
about whether adjectives or nouns should be used. We do, unfortun­
ately, have to devote some time to describing the particular usage we 
adopt. 

For my part I follow Fisher (see, for example, his papers in the 
pamphlet Smoking and Lung Cancer (Fisher, 1958), which, for half-a­
crown, is a very good bargain for someone who wants to read a pro­
found discussion of the nature of probability) in preferring to restrict 
the term probability to that kind of precisely measurable uncertainty 
the concept of which arose in connection with games of chance in the 
sev.enteenth century, when it became possible to manufacture reason­
ably 'fair' dice and reasonably uniform packs of cards. In relation to 
a single throw of a fair die, the concept of a hypothelical infinite 
population of throws, to which the particular one considered belongs, 
and one-sixth of which result (for example) in a three, is natural; and 
the impossibility of a gambling system, or martingale, corresponds to 
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our inability to specify a subset of the in.finite population, to which a 
throw under consideration belongs, and with which any fraction other 
than one-sixth can be attached. To say that any proposition has a 
probability of one-sixth, therefore, for me means that my knowledge 
of the proposition differs only in subject matter, not in quality or 
quantity, from my knowledge of the proposition that the die will turn 
up' three'. It implies uncertainty, but uncertainty of a specially precise 
kind. On the other hand there are many propositions on which, if I 
were a betting man, I would be prepared to bet five to one against, 
concerning which my knowledge is much less precise than my know­
ledge of the die; such propositions would not, for me, have a prob­
ability, though they would have a plausibility which was measurable 
in a loose way by reference to the betting odds. The word' probability', 
as I prefer to use it, refers to the most precisely measw·able kind of 
uncertainty; other forms of uncertainty are, I think, best referred to 
by other words, like 'plausibility', 'acceptability', and so forth. 

Before continuing with the discussion of statistical inference it is 
necessary to refer to a topic which, in my opinion, is distinct from 
inference, namely, decision-making. That there is a distinction seems 
to me to follow from the fact that in decision-making it is necessary to 
specify a goal to be aimed at in the result of the decision, whereas 
inferences can be made without reference to any such goal. To equate 
decision-making with inference is tantamount to pragmatism; as with 
other theories of truth, pragmatism is not wholly false, and it serves 
to emphasize important aspects, but it cannot be accepted as wholly 
adequate. It is certainly true that many statistical decision problems 
are still wrongly treated as if they were problems of statistical infer­
ence; the pendulum may have swung too far towards decision-making 
in the upper reaches of abstract statistical theory, but in the more 
concrete sphere of applications it has not yet swung far enough. This 
overforwardness of theory, combined with lag in application, is due, 
in my opinion, to the attempt to embrace statistical inference within 
statistical decision theory. This attempt has led to a misguided search 
for general principles, such as the minimax principle (Wald, 1950) or ( 
the unbiasedness principle (Lehmann, 1959), which attempt to get 
rid pf the essential indeterminacy of the decision problem as usually 
formulated. A frank recognition of the (limited) degree of i:ndetermin-
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acy that attaches to nearly all practical decision problems would 
greatJy facilitate their solution. I am most certainly with Professor 
s avage in his call for more use of Bayesian methods in practical 
statistics. 

In applying probability theory to decision-making we consider the 
expected gain or Joss. This seems to me to imply that we are concerned 
with what happens in a 'long run' of similar decision situations. We 
may suppose that in such a' long run' the various 'states of nature' 
(hypotheses) will occur with definite 'long-run frequencies' which 
define a •prior distribution'. This prior distribution is not (usually) 
a distribution of probability, but rather a distribution of long-run 
frequency. However, it can be proved that we get the best decision 
rule, in a given long run, by applying Bayes's theorem to the prior 
distribution defined by the long run, if this prior distribution is known. 
If it is unknown, then the problem of getting the best decision rnle is 
indeterminate, like the problem: I Ox+ y = 21, what is x? Here the 
unknown y corresponds to the unknown prior distribution, while x 
corresponds to the best decision rule. Sometimes we may guess that 
y is small, and so deduce that xis about 2; similarly, we may guess that 
a prior distribution is reasonably smooth, so that the likelihood 
function itself will give a fair approximation to the posterior distri­
bution. But if we really have no idea of what the prior distribution is 
like, then we can have no rational idea of what to do, and we can only 
make guesses. However, people's wills do not enter into these guesses, 
so that these guessed prior distributions should not be described as 
personal. Whoever manages to guess the prior distribution most 
accurately will obtain the best decision rule. 

Decision situations, where Bayesian principles of this kind are 
applicable, occur frequently in industrial applications of statistics. 
In such cases we are commonly concerned with routine decisions, and 
some empirical evidence concerning long-run frequencies is often 
available, as, for example, with sampling inspection, where the prior 
distri~ution, or process curve as it is called in this instance, can in 
principle be estimated from past records. The subjective approach to 
probability is at a disadvantage here, because it puts the emphasis in 
the wrong place, suggesting that we should perform acts of intro­
spection in order to establish the prior distribution, rather than collect 
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records. This wrong emphasis of the subjective theory leads to neglect 
of some important aspects of Bayesian decision theory. For example, 
from a subjective point of view it is hard to think of a lumped prior 
distribution as being appropriate for a continuously variable para­
meter. Yet lumped distributions have properties which make them 
often the most convenient type of parameter distributions to use. 
Again, in relation to a given experiment it has often proved useful to 
specify the prior distribution by reference to the 'non-contradiction 
principle'. This is an application of the elementary logic of the simple 
test of significance to the more sophisticated problems of choice 
between statistical hypotheses such as are involved in statistical 
decisions. It consists in noting that the prior distribution must be such 
that for any conceivable experimental result there must be an hypo­
thesis H having positive prior probability which is not significantly 
rejected by the result E. The non-contradiction principle, with the use 
of lumped distributions, and perhaps variance considerations, when 
appropriate, often serve to specify prior distributions with all the 
precision needed for practical applications. 

To return to statistical inference, it is necessary to classify problems 
somewhat differently from the way which has become usual in 
textbooks of mathematical statistics. Instead of the usual division 
into 'testing hypotheses', 'estimation', with its subdivision into 
' interval' and 'point estimation', and 'discrimination' we prefer 
to consider 

(a) the comparison of data E with a single statistical hypothesis, H, 
leading to simple tests of significance; 

(b) simple preference problems, in which, on the basis of data E, 
we rank a family of simple hypotheses H(B) in order of cred­
ibility; 

(c) composite preference problems, in which, on the basis of data 
E, we wish to rank a family of composite hypotheses. 

This enumeration of types of problem is not, of course, exhaustive, 
and it is not intended to exclude the consideration of the same body 
of data from several different points of view. 

As to (a), we require first of all a criterion serving to rank £amongst 
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other possible experimental results, in order of discrc.pancy from what 
is to be expected if His true. The measure of discrepancy chosen will 
depend on the way in which His interpreted, and on other matters 
involving scientific judgement. We must, of course, have in mind some 
scientifically meaningful alternative possibility to H, and our choice 
of roeastu-e of discrepancy will reflect our alternative conceptions to 
this extent. But we need not have iJ1 mind any statistically specified 
alternative hypotheses, as Neyman would suggest; indeed, if the 
alternatives are fully specified as statistical hypotheses, we shall have 
a preference problem rather than a simple testing problem. 

Tbe earliest serious test of significance on record seems to be that 
from which Dan iel .Bernoulli inferred that the (oriented) planes of the 
planetary orbits (as represented by their poles on the celestial sphere) 
were too close together to be reasonably consistent with the hypo­
thesis that they were randomly and independently distributed. This 
example serves to illustrate well the fact that no statistically specified 
alternative needs to be considered to make a test of significance valid. 
The idea that the pla11etary orbits might tend to be coplanar, or nearly 
so, was clearly meaningfu I in the context of Newtonian mechanics and 
the theory of gravitation current at the time, but theories of the origin 
of the solar system were not then developed (they are hardly so even 
now) to the point where statistically definite a lternatives to the 11011 

hypothesis could be considered. 
Bernoulli's test illustrates another point iJ1 connection with tests of 

significance, namely that the measure of discrepancy used may be to 
some extent arbitrary. He first considered as a measure the size of the 
sma llest circle which would include a ll the representative points on the 
surface of the sphere; the probability of a circle as small or smaller 
than that observed was so remote as to represent what Bernoul.li 
called a' moral impossibility'. He also considered the mean distance 
of the points representing the other p lanets from that representing the 
earth, and found that this also corresponded to a remotely improbable 
value. The fact that both measures of discrepancy Jed to low prob­
abili ties enable the null hypothesis to be firmly rejected. Had the two 
measures given conflicting answers, the issue would have remained in 
doubt, though th is doubt might have been resolved by further, more 
precise, considerations. 
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Other points of complication arising with tests of significance may 
be illustrated by reference to the 2 x 2 table : 

Sample I 
Sample JI 

A 

a 
b 

r 

not-A 
c 
d 

s 

Total 
m 
II 

N 

If the probability of A is p 1 in the population from which I is a 
random sample, and p 2 in that from which II is a random sample, we 
wish to test the hypothesis H(p) that p1 = p 2 = p. At first sight it may 
seem that a suitable measure of 'discrepancy' would be the apparent 
difference in relative frequency, namely 

a b 

' m n 

but the variability of this changes withp in such a way as to leave us in 
doubt whether the difference 

10 5 
--- = 0·05 
100 100 

does or does not represent as big a discrepancy as the difference 

50 45 
--- = 0·05. 
100 100 

We are led to see that the discrepancy ranking can be made W1am­
biguous in several ways: by restricting consideration to the set S 1 

of tables having the same column totals (r,s) as the given one, or to 
the set S2 of tables having the same values of (a, c) as the given one, 
or the set S3 of those having the same values (b,d). The set S 1 is the 
only one of these, however, on which the conditional distribution 
defined by the null hypothesis is free from the nuisance parameter p, 
and so it is this S1 which is chosen as the reference set. ( 

We obtain an example of a preference problem, case (b), if we con-
sider the 2 x 2 table as far as it throws light on the relative credibility 
of different pairs of values of (pl>pi). From this point of view the 
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whole of the relevant information is contained in the likelihood 
function 

which is here, as usual, normalized by making 

sup L = 1. 

By drawing the contours 

L(p1, P2) = const 

in the unit square representing all possible values of (PI>Pi), we can 
see how the given data rank these values, in order of likelihood. 

Likelihood is a measure of credibility of a precise kind, which has a 
weaker mathematical structure than has probability, in that the prob­
abilities of two mutually exclusive events, E, F, determine (by the 
addition rule) the probability of their disjunction, E or F, but the 
likelihoods of two mutually exclusive hypotheses, H 1, H 2, do not, by 
themselves, serve to determine that of their disjunction, H 1 or H 2• 

If we need an interpretation of likelihood, it can be obtained in two 
principal ways. Dfrectly, if we find, for example, that 

while 

L(0· 1, 0· 1) = 0·9, 

L(0·2,0·05) = 0·01, 

we can say that as between the two hypotheses represented by these 
two pairs of values of (Pt>P2), the odds are 90 to 1 in favour of the 
first. This implies that further evidence providing a likelihood ratio 
at least as large as this, in the opposite sense, would be needed before, 
on the combined data, the first hypothesis was no more strongly 
supported than the second. For example, if an event E were just l · 57 
times as probable on the second hypothesis as on the first, since 
(1·57) 10 =90, wewouldrequireevidenceequivalenttoten occurrences 
of such an event before considering the combined data as favouring 
neither hypothesis. 



46 THE FOUNDATlONS OF STATISTI C AL INFER ENCE 

Alternatively we can interpret a likelihood ratio by reference to a 
hypothetical set of repetitions of experiments, in which we imagi11e 
Wald's 'sequential probability ratio' procedw·e to be used . We 
interpret the likelihood ratio of 90:1 for Hversus H ' by considering a 
long run of sequential ' tests• of one simple hypothesis against another, 
in every one of which the likelihood ratio of 90: l, or 1: 90, is achieved 
before stopping. Such a test procedure will be associated with a 'risk 
of error of the first kind' (or of the second kind) of 1/91, or, odds of 
error 90: I against. These odds will be interpreted in a direct prob­
ability sense, as those associated with such a test procedure when one 
or other of the competing hypotheses is given as true. 

Neither of these interpretations of likelihood relies in any way on 
the idea of a prior probability for the hypotheses considered. If we feel, 
in a given case, able to make use of such an idea, then the likelihood 
ratio is very sin1ply .interpreted, as the factor by which the prior 

· probability ratio is multiplied to give the posterior probability ratio. 

- -

In particular, in the important case when all hypotheses have the same 
prior probability, the likelihood function and the posterior probability 
function differ, if at all, only by a normalizing constant. 

The problem of testing hypotheses, as formulated by Neyman and 
Pearson, belongs in my opinion to the present category of preference 
problems. According to Neyman and Pearson, we are given a sample 
space S, with typical point x and measureµ., and a parameter space Q, 
with typical point fJ, and a function cp(xl fJ) defined on the product 
S x Q which, for each fixed 8, is a probability function in S. The para­
meter space Q is divided into two sets, wand its complement Q-w, 
corresponding to the 'hypothesis tested', Ho and the 'alternative 
hypothesis', Hi; the' testing problem' then consist in dividing S into 
a set C, the critical region, and its complement S - C, such that if the 
observed point x falls in C we 'reject Ho in favour of Hi', whereas if 
x falls in S- Cwe 'acceptH0', or at least' fail torejectH0'. The power 
function associated with the critical region C is the probability that 
x will be in C, as a function of 8, 

P(BjC) = f cp(xjfJ)dµ. 
c 

For any fixed choice of C we can imagine that the experiment consists, 

--

( 
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not in finding which x in S is to be observed, but merely whether the 
event' x in C', or its negation' x in S- C' is observed. If we denote the 
first of these events by E, it is then apparent that the likelihood func-

tion of 8, given E, J </>(xi8)dµ, 
L(8\ E) == _c-=----­

sup J </>(xi 8) dp. 
0 c 

is, apart possibly from a normalization constant, the same as the 
power function P(8JC). Thus the power function is the likelihood 
flll1ction, given that a significant <X result has been obtained. 

It would be out of place here to develop in detail the relationship 
between P(8l C) and L(8JE) and L(BJx). However, it should be noted 
that whenever two distinct points on the power curve are compared, 
as for example in Neyman's definition of an unbiased test: 

P(BIC) ~ P(80JC) for all 8 # 80, 

there is an implicit use of the notion of likelihood; the comparison of 
probabilities calculated <?n distinct, mutually exclusive hypotheses 
can have no meaning of a purely probabilistic kind. 

From the present point of view, if it is accepted that the object in 
a 'testing problem' as posed by Neyman and Pearson, is to compare 
the 'plausibilities' of H0 :8 in wand H1:8 in Q-w, it would seem 
reasonable to do so by comparing the mean level of the likelihood 
L(8\x) in wand in.Q - w, i.e. toconsiderthe'average likelihood ratio' 

f L(8Jx)d8 

R(x) == - j - L -(8-\x_.)_ d.8' 

n-w 

where dB denotes some suitably chosen integrating measure. The 
R(x) thus introduced is near to Wilks's ratio 

sup L(eJx) 

W(x) == - '°--­
sup L(e\x) 
!J-w 

and R(x) may be used as a test criterion, as W(x) is commonly so 

·-------------
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used. The function R(x) has the advantage over W(x) of not giving 
rise to inadmissible test procedmes. 

Before leaving preference problems I would like to re-emphasize 
a plea I have made before, for a study of the types of likelihood func­
tion which can arise in practical statistical problems. It happens in 
very many cases indeed that logL(B) is very well approximated by a 
quadratic function of the coordinates B; of 8; and in such cases a good 
description of the likelihood function is obtained by quoting the 
maximum likelihood estimator of 0, 8, together with tl1e second 
derivatives <J2/o8r, &2/aBF aej of logL(B) at B. It is a pity that the 
asymptotic equivalence of these derivatives, under regularity con­
ditions, to elements of the invariance matrix of the estimates B; has 
obscured the more important non-asymptotic interpretation in terms 
of a paraboloidal log-likelihood function. 

It can happen that the parabolic approximation to logL(B) is poor 
and in such cases other approximations may be useful. Fisher has 
a!i-eady noted the possibility of considering the series of higher order 
derivatives of logL(O), from which logL(B) can be constructed by 
means of the Taylor series, and we may content oui-selves here with 
noting that in other cases it may be more appropriate to use th,e series 
of moments, which in the one-dimensional case are 

µ,, = J 8' L(B)dB (r = 0, 1, 2, .. . ) 
n 

instead of the Taylor coefficients. The moment series could be com­
bined with any system of curves fitted by moments (for example, the 
Gram-Chartier series) to give an approximation to the trueL(8) from 
the series ofµ.,. However, aU such methods of approximating to 
likelihood functions will become less important when large automatic 
computers enable us to trace the whole course of the likelihood 
function without difficulty. 

Coming finally to problems of the third category, an example of 
this is provided by that of fitting a polynomial to a set of observed 
values of a variable y, corresponding to various values of an inde­
pendent variable x . All sorts of empirical rules have been given for 
deciding· when to stop including terms in x of higher degree, but none 
of these rules seems able to withstand logical scrutiny, unless we 

L---~~~~~--------------= 
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introduce some idea such as one we have ventured to call 'accept­
ability'. According to this, lbe reason why we fit, for example, a cubic 
term after fitting terms up to the second degree, 

y = a0+a1 x + a2 x 2( +a3 x3)+error, 

instead of jumping, say, to the seventh degree, 

y = a0 +a1 x +a2 x2
( +a7x7)+error, 

is, that in some sense x 3 is 'more acceptable' than x 7. The notion of 
acceptability involved here can be quantified, in the context of a 
family of functions such as the polynomials here considered, which 
exhibit lattice structure, and certain other special features. It serves to 
make explicit many of our preconceptions concerning the nature of 
our experimental material, and the sorts of law which it may be 
expected to obey. Like likelihood, it may by some be regarded as just 
another type of probability, a kind of prior probability this time; but 
in my view the distinction between it and likelihood, like that between 
likelihood and probability, is worth preserving. There are many 
unsolved problems in this direction. 

DR D.R. COX 

Some of the consequences of basing the formal theory of statistical 
inference and decision systematically on Bayes's theorem would be: 

(i) the more or less automatic formal solution of parametric 
questions, including not only ones like the Fisher-Behrens problem, 
but also problems containing what would normally be regarded as 
non-identifiable parameters; 

(ii) the theory of standard procedures, such as those based on the 
t andFdistributions, could be developed very simply as corresponding 
to certain very special prior distributions. This would avoid the rather 
elaborate methods needed, for example, to obtain the t test as an 
optimum test in the Neyman-Pearson sense; 

(iii) a single set of 'laws' would govern frequency ratios and 
measures of uncertainty; 

(iv) certain complications in the conventional theory, such as the 
need to consider the stopping rule when analysing observations, would 
disappear. 

D 

--
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In discussing the use of Bayes's theorem, when no prior frequency 
distribution is available, we need first to distinguish sharpJy between 
the approach based on subjective probability and the 'objective' or 
'necessary' theory of Jeffreys (1948). Professor Savage has himself 
stressed this distinction. Although niuch of the mathematics is the 
same in the two theories, the meaning of the answers is entirely 
different. The following comments refer mainly to the subjective 
approach. 

A decision about what lo do in a given situation, whether in science 
or technology, does seem always to involve subjective considerations: 
quite apart from the assessment of sampling errors there are the often 
much more important doubts about interpretation and, in techno­
logical matters, such things as whether conditions in the future will 
be at all like they have been in the past. If one wants to represent all. 
this uncertainty in a formal mathematical scheme, the personalistic 
approach seems lo me the way to do it. 

An excellent reference on the subjective element in scientific 
research is the book by Beveridge ( 19 51 ). He emphasizes, for instance, 
the subjective considerations connected with following up apparently 
fortuitous occurrences, such as that leading to the discovery of X-rays. 

Statistical methods are, however, usua1ly applied to very much 
narrower questions. We are interested in an unknown parameter of a 
frequency distribution and wish to consider questions about the 
parameter in the light of statistical data (i.e. data with stable fre­
quencies). We are dealing then with a much more restricted problem 
and one to which a nearly impersonal quantitative answer is given by 
conventional methods of measuring uncertainly. Thus if a positive 
d ifference between a treated group and a control group is obtained, 
significant at the 0· J per cent level, anyone wishing to deny the 
existence of a positive treatment effect must either 

(i) say that by chance there is an exceptionally misleading result; 
or 

(ii) say that there is an error in the design or execution of the 
experiment; or 

(iii) say that the statistical analysis is inappropriate. 

This usually narrows down the subjective element in the interpretation 
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greatly; there may be disagreement between individuals over (ii) and 
(iii), but any such disagreement is open to rational discussion. The 
approach to such a problem by Bayes's theorem with a personal prior 
distribution leads in a sense to an answer to a more ambitious question. 
But the answer will vary from person to person and for one person 
from one time to another. In some, although of course by no means all, 
applications of statistics the near-objectivity of the answer is of great 
value. The disagreement between conventional and personalistic 
approaches seems to be one of tactics; at which stage the subjective 
considerations should be introduced. 

When there is a marked difference between the Bayesian and non­
Bayesian answers to a problem, the difference can often be traced to a 
difference in the attitude to unknown paramet:ers. The unknown 
parameters may be those of direct concern or may be nuisance para­
meters. An extreme case is when we ask questions about a non­
identifiable parameter 8. The Neyman-Pearson or Fisherian theories, 
which require that the measures of Wlcertainty (significance levels, 
etc.) should have a frequency interpretation whatever may be the 
values of the nuisance parameters, will say that no inference about 8 
is possible. If, however, we introduce a subjective prior probability 
distribution for the unknown parameters we can form a posterior 
distribution for 8, although this will of course be diffuse unless strong 
prior information about () is fed in. 

In general, the statements '8 has some particular prior distribution 
p(8) over the interval I' and' B may take on any value in the interval I' 
are qualitatively different in the following sense. It may turn out to 
be very important whether or not 8 lies in some small subinterval; 
the first statement says that this is unlikely, the second does not. Of 
course, in many cases, especially if there is an appreciable amount of 
information in the data about 8, the introduction of the prior distri­
bution is fairly harmless, and these are the solutions in which Bayesian 
and conventional answers agree closely numerically. 

It may be useful to distinguish between the following types of 
conventional statistical argwnent in which explicit probabilistic 
aspects are important. 

A. Assessment of evidence about statistical parameters. This type 
can be much subdivided. 
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B. Decision procedures with (nearly) objective loss functions and 
prior frequency distributions. 

C. Decision procedures of the (et, {3) type in which losses and prior 
probabilities do not enter quantitatively, but are considered quali­
tatively in choosing the appropriate probability of error of the first 
kind, a. 

D. Decision procedures of type C witha chosen arbitrarily to bea 
conventional value such as 0·05. 

There fo llow some miscellaneous comments on A-D. 
(i) The difference between A and C is typified by the approach to 

standard significance tests. In A we give the level attained, in C and D 
we fix an a and use a rigid decision rule for 'acceptance' and 
'rejection'. 

(ii) C is very useful in those common situations in which something 
like a routine decision rule must be given but in which quantitative 
knowledge of costs is not available. The resulting rule may not be 
optimum, but has the substantial merit of having known properties, 
making rational discussion of different rules easier. 

(iii) Significance tests in the sense of A are appropriate in at least 
two different situations, to 

(a) measure evidence against a null hypothesis that is thought 
quite possibly to be nearly true; 

(b) measure whether the direction of an effect has been reasonably 
well established, there being no particular reason for expecting 
the true value to be near null value. 

In many practical applications (b) seems the more appropriate; much 
current criticism of significance tests overlooks this. 

(iv) In thinking about significance tests, the Neyman-Pearson 
interpretation of a is kept in mind as a hypothetical procedure. Some 
minor difficulties in the Neyman-Pearson theory disappear; for 
example, the use of equi-tailed tests in two-sided situations can be 
justified from A, whereas in C equal tails are not usually appropriate. 

(v) D, using an arbitrary conventional level of a and ignoring losses 
and prior probabilities, seems objectionable; as an approximation to 
A it may not be so bad. 

To sum up, a key issue seems to me to be the following. Do we have 
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an approach of limited scope, in which all probabilities have a fre­
quency interpretation, in which our answers are nearly objective, but 
in which personal judgement has to be introduced qualitatively in 
making use of the answers? Or do we take an approach which appears 
to take us quantitatively further, but in which our answers are sub­
jective and often difficult to specify numerically at all precisely? At 
present I favour the first approach, especially where it is important to 
convey to other people the statistical uncertainty in the conclusions. 

A final general comment is that the discussion above is of the 
question of how to reach conclusions about parameters in a model 
on which we are agreed. It seems to me, however, that a more import­
ant matter is how to formulate more realistic models that will enable 
scientifically more searching questions to be asked of data. 

PROFESSOR E. S. PEARSON 

Of the previous speakers, I suppose that I am in most general agree­
ment with Professor Bartlett, but at the same time I have a natural 
sympathy with anyone who is trying to thrash out better ways of 
handling the problems of statistical i11ference. Professor Savage has 
spoken of the enthusiasm with which he sees new lines of thought 
being opened out in front of him, and perhaps I had somewhat the 
same feelings round about 1931 when I visited the U.S. and discussed 
ideas which seemed to be opening out in front of Neyman and myself. 

There were a good many references in the previous contributions to 
the Neyman and Pearson theory; they did not altogether correspond 
to the theory as I see it, but that perhaps is because my own views have 
changed somewhat and developed. Of course, through lack of close 
contact with my partner dw"ing the last twenty years, it would be a 
little difficult to say where precisely the N . and P. theory stands today! 
I think, however, that a few words on past history may not be out of 
place, because I believe in the value of emphasizing the continuity as 
well as the differences in what have been the broad lines of develop­
ment of our subject. I have the impression that by showing how the 
same situation is being tackled by alternative approaches the whole 
subject gains in richness in a way it would not if the exponents of one 
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line set out to discredit another line by saying it was followed in 
error! 

There has perhaps been a tendency to speak of the Neyman-Pearson 
contribution as some static theory, rather than as parl of the process 
of development of our thought on the background of statistical theory. 
N. and P. were after aJI very much persons of their Ii me. They built on 
things which they found in the middle 1920's. For example: 

(a) The way of thinking which had found acceptance for a number 
of years among practising statisticians, which included the use of tail 
areas of the distributions of test statistics. 

(b) The classical tradition that somehow prior probabilities should 
be introduced numerically into a solution. Perhaps only lip service was 
still being paid to th.is idea, but one can certainly find some evidence 
for the strength of the tradition in certain of the writings of Karl 
Pearson and of' Student'. 

(c) The tremendous impact ofR. A. Fisher; his criticism ofBayes's 
Theorem and his use of Likelihood. 

(cl) Fisher's geometrical presentation, which first came home to me 
in the small diagram in his paper on the distribution of a correlation 
coefficient (Fisher, 1915, p. 509). Out of this readily came the concept 
of alternative 'critical regions' in a sample space. 

(e) Fisher's tables of 5 per cent and 1 per cent significance levels, 
which lent themselves to the idea of a choice, in advance of experi­
mentation, of the risk which the experimenter was prepared to take 
of the 'first kind of error'. 

(}) The emphasis on the importance of planning an experiment, 
which leads naturally to the examination of a power function, both 
in choosing the size of sample to enable worthwhile results to be 
achieved and in determining the most appropriate test. 

(g) Then too there were contributions from' Student', some of them 
from personal discussion; I remember particularly his letter to me of 
1926 which helped to put the concept of the alternative hypothesis 
into the picture. 

What I think we found, as no doubt Savage and others think that 
they find now, was a dissatisfaction with the logical basis, or lack of 
it, which seemed to underly the choice and development of statistical 
tests. We found this not only in the theoretical work of what was then 
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called the Biometric school but also to some extent in R. A. Fisher's 
work, as far as we could understand his underlying philosophy. We 
tried therefore to find a set of principles with a mathematical basis 
which it seemed to us would lead to a rational choice of statistical 
procedures when faced with certain types of problem in the analysis 
of data. Put in another way, we were seeking how to bring probability 
theory into gear with the way we think - or, you may like to say, the 
way we thought we think, for it is a rather difficult problem for anyone 
to nail down just how he does think. No doubt, because the scope of 
application of statistical methods in those days was narrower, the 
emphasis which we gave to certain types of situation may now seem 
out of balance. 

We were certainly aware that inferences must make use of prior 
information and that decisions must also take account of utilities, but 
after some considerable thought and discussion round these poiJ1ts we 
ca1ne to the conclusion, rightly or wrongly, that it was so rarely possible 
to give sure numerical values to these entities that our line of approach 
must proceed otherwise. Thus we came down on the side of using only 
probability measures which could be related to relative frequency. I 
think I am right in saying that it was Neyman, brought up in the con­
tinental mathematical school, who held longest to the idea of retain­
ing in our theory measures of prior probability. You will find that 
in his paper which gave the first exposition in English of confidence 
interval theory (Neyman, 1934, pp. 589-93), a function representing a 
priorprobabiUty distribution appears, although it is shown that know­
ledge of its value is in that problem immaterial. Again, in another 
paper (Neyman and Pearson, 1933) we discussed 'the testing of 
statistical hypotheses in relation to probabilities a priori'. Just because 
the problem of specifying the numerical values of these probabilities 
seemed to us so often insoluble, our aim here was to discuss in what 
sense the conclusions drawn from a test could be described as inde­
pendent of these probabilities. 

We also considered how far inferences and decisions could be based 
on the numerical values oflikelihoodratios. But while we first obtained 
the critical or rejection regions of our theory as the contours in the 
sample space on which the appropriate likelihood ratio was constant, 
we thought that the meaning of a test was more easily grasped if 
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expressed in terms of the integral of the probability density inside (or 
beyond) the bolUldary of the region, rather than in terms of the 
likelihood ratio on the boundary. 

Thus it seems to me that Professor Savage, and Professor Barnard, 
are again at the same points, but with new arguments which in their 
view lead to different conclusions from ours. I think to a large extent 
we are or were trying to meet the same requirements of a 'rational 
man' in different ways, and to me at any rate it will be illuminating 
to explore the parallelism f w·ther than has so far been done. The 
personal probability which Professor Savage expresses in so far as he 
can in numerical measure, using, if I understand correctly, the analogy 
of betting odds, is undoubtedly paralleled by my own conception of 
the need for the exercise of personal judgement in snch matters as 
choosing the appropriate significance level or trying to decide on the 
magnitude of a worthwhile effect or on the balance of utilities. I have 
little doubt that when expressed in a variety of situations, where pos­
sible in numerical terms, the composition of Professor Savage's 
expressions for the posterior estimation of odds will throw light on 
the ditferentfacets of the more intuitive process of personal judgement 
to which the 'frequentist' must appeal. 

But to throw illumination on one approach by comparison with 
another is not the same thing as to substitute one approach for the 
other. I would hope somehow to reach a blend of the two! My own 
personal difficulty is that there seem to be so many situations in which 
I cannot imagine how I would assign numerical values which would 
satisfy me to prior probabilities and utilities. The number of matters 
to be taken into account under the heading of prior information seems 
to be so vast. There are not only the prior distributions forµ. and a, 
but for normality, for equality of variance, for the degree of homo­
geneity of the data and its randomness. In the questions of utility it 
seems to me that we are often not faced with straight economic com­
parisons; how, for example, as occurs in medical research, are we to 
balance in precise numerical terms the possible chance of saving life 
against the waste of a limited supply of experimental effort? 

If the complete formulation, even in algebraic terms, of all the 
factors which in some way influence human judgement is not possible 
it seems that the new theory cannot be mathematically complete as a 

( 
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model of the working of the human mind. It may in fact be that what 
it will lead to, for the practising statistician, is the use of o ld tools with 
anew understanding and confidence. Possibly Professor Savage is not 
yet prepared to say what he hopes for in this direction rumself? At 
any rate, what I feel quite sure at the moment to be needed is simple 
illustration of the new notions on real, everyday statistical problems. 
Until this is attempted, the matter rests largely on the plane of aca­
demic discussion. 

There are two small points which previous speakers made on which 
I should like to comment. 

Professor Barnard introduced the idea of a 'simple test of sig­
nificance' where there was no specified alternative and quoted the 
problem of Daniel Bernoulli regarding the orbits of the planets as the 
first example of the application of such a test of which he was aware. 
The null hypothesis was that the poles of the orbits of the six major 
planets* were randomly and uniformly distributed over a sphere. 
The test which Bernoulli used shows that he had in mind, whether 
consciously or not, alternatives which suggested that the poles had 
been restrained, through some unknown factors, to lie within a small 
area. Had an alternative to randomness involved some idea of a 
repulsive force acting between the poles, the test he would have used 
would surely have been quite different? As I see it, the concept that a 
test can only be chosen rationally having regard to the likely class of 
alternatives, is relevant whether or not the alternatives can be assigned 
in physical terms and given a precise mathematical specification. To 
derive an' optimum' test it may be necessary to have a shot at formally 
specifying the alternatives mathematically, but I think that the notion 
of alternatives can guide our procedure in a rational way without 
precise mathematical specification. 

Later Dr Cox spoke of the advantage of using prior distributions 
from the point of view of simplicity in teaching as compared with 
elaborate considerations of power. But I think this is only a question 
of the teacher and how he introduces his subject. It is always difficult 
for us to be sure how far our students really understand what we say, 
but it never seems to me difficult to present and illustrate simple ideas 
of power in the first term or two of a statistical course. On the other 

* Six major planets, including Earth, were known in 1734. 
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hand, the introduction of prior distributions seems to me much more 
difficult because of the impossibility, in illustration, of putting for­
ward with conviction a meaningful distribution with parameters 
having assigned numerical values. 

DR C. A. B. SMITH 

I have two apologies to make. Firstly, I may repeat what is already well 
known through not being aware of all the latest developments. 
Secondly, I may appear to be rude to various members of the con­
ference. This is not intended to be either arrogant, or dogmatic, or 
unfriendly to those who know much more about these things than I 
do : it is simply that I am trying to put the points briefly. 

I will soon have to give some general accow1t of statistics to 
biologists, and this has compelled some thought on the fundamentals 
of the subject, which has reinforced some long-standing uneasiness. 

(a) The general standard of self-criticism among statisticians seems 
lo be too low in certain aspects, although in other ways (e.g. in the 
mathematics) it is very high. Thus, statistical procedmes generally 
depend on certain assumptions, such as normality of distributions, or 
equality of variances. In fact, in some cases these assumptions matter 
little, in other cases they make an appreciable difference, and in others 
they are quite critical. For example, in a 2 by 2 block experiment, 

not-P 
p 

not-N N 

x y 

z w 
I ,. 

where x, y, z, 111 represent the responses, when we are finding the 
standard error of the main effects of N and of P and the interaction, 
it is of no importance whether the variances of x, y, z and ware equal 
or not, since the standard errors depend only on the average of the \ 
four variances. If, however, we are interested in the variance of the 
effect of Nin the absence of P, the question of equality does matter, If 
since if x and y have much smaller variances than z and 111, the average I 
will overestimate the variance of x-y. 

Of course. we know that much work has been done on the effect of 
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non-normality on the t distribution, on robust tests, etc. Also, in 
some cases experts may lrnow by long experience that the assumptions 
are fulfilled. Generally, however, such assumptions are allowed to go 
with relatively little challenge, especially in textbooks. In almost any 
other science, any such basic assumptions would be vigorously 
questioned and the investigator required to produce compelling 
justification. 

I might add that while I know little about field experiments, in the 
type of biological material I am familiar with, there are often quite 
striking differences in variance. 

(b) Statisticians often play down something which is obviously 
true, when it does not quite accord with their line of thought. An 
example is the statement that there is no difference between inference 
and decision problems. 

A decision problem means the choice between several possible 
comses of action: this will have observable consequences, which may 
be used to test its rightness. An inference concerns the degree of belief, 
which need not have any consequences, though it may. This makes it 
more difficult to come to agreement on questions of inference than on 
decisions. For example, the question 'Shall I eat this apple?' is a 
matter of decision, with possible highly satisfactory or uncomfortable 
outcomes: ' Is this apple green?' is a question of belief. Of course, the 
two problems must be closely related, even though they are distinct : 
if one accepts Professor Savage's theory, the decisions are closely 
related to the probabilities by the rule of maximizing expected utility. 
Anot~er similar untruth is the assertion that frequency probability 

is a particular case of subjective probability. This may be formally 
true, just as it is formally true that an integer is a particular case of a 
rational number. However, a frequency is measurable (apart from 
slight difficulties about convergence to the limit): a subjective prob­
ability is only ideally measurable.* 

(c) What has Professor Savage done? A 'consistent' man is one 
who obeys a few axioms of the type: ' If I prefer A to B, and B to C, 
then I do not prefer C to A.' 

* Note added later : Both frequency and subjective probability are 
properly considered as fictions, as Dr Good subsequently remarked: they 
are, however, rather different fictions, it seems to me. 
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The reasonableness of such axioms can readily be seen by con­
sidering them in practical situations, e.g. let A= strawberries and 
cream, B = bread and butter, C = stale cheese. If the axiom was 
untrue, I could make no choice when asked to choose one out of the 
three, since whatever choice I made, another would seem preferable. 
This is absurd. 

It seems that if one makes a few such axioms, which could scarcely 
be disputed by any reasonable person, one can show that anyone who 
is consistent in this sense must behave as if he had measurable prior 
probabilities and utilities. There is no loophole of escape, as far as I 
can see at the moment. It applies to the major decisions of life as well 
as the minor recurring ones. 

Such an absolutely consistent person does not, of course, exist. 
Consistency is not necessarily a virtue : one can be consistently 
obnoxious. However, inconsistency is not necessarily a virtue either, 
and it seems reasonable to try to make a theory of probability con­
sistent in this sense, i.e. to make it agree with Prnfessor Savage's 
theory, at least unless there is some very compelling reason why one 
should do otherwise in any particular circumstances. 

(d) Significance tests, in their usual form, are not compatible with 
a Bayesian attitude. However, they have certain virtues, in that they 
reduce the data to a single number, the significance level, which is 
'objective' in the sense that all statisticians would agree on it, and is 
easily grasped in a way that a whole series of numbers or graph is not. 
In principle, one should give the likelihood function as the result of an 
experiment, but it is often convenient to try to get some single number 
summarizing the data. 

This could be done as follows. As an example, suppose we wish to 
test whether some probability pis tor not. The appropriate method is 
to give some initial probability A tbatp = t, and distribute the remain­
ing probability 1-A over the remaining values of p. However, it will 
usually make no important difference if the remaining probability is 
uniformly distributed between 0 and 1: this redistribution may change 
the final probabilities by a small factor, but not so much as to seriously 
alter any conclusions which may be drawn. We then have in the usual 
way that 

Final odds = initial odds x likelihood ratio, 



PREPARED CONTRIBUTION: SMITH 61 

where the initial odds, A/(1-A), are a measure of one's general 
prejudice in favour of the null hypothesis p = !, and the likelihood 
ratio is calculated for the two distributions (i) p = !, (ii) p uniformly 
distributed between 0 and l. Thus it seems eminently reasonable to 
summarize the data by the likelihood ratio : anyone can weight this 
by whatever value of A/(1 - A) he feels reasonable before drawing his 
own conclusions. Good and Jeffreys mention very similar procedures. 

(e) It seems to me, however, that most significance tests used in 
practice should really be estimation problems. We do not wish to 
know whet her some treatment has any effect- it almost certainly has -
but only what is lhe magnitude of this effect, if appreciable, or whether 
it is positive or negative. 



PART Ill 

Discussion 

Professor L. J. SA v Ao E*: I keenly appreciate the patient, competent, 
and understanding atmosphere in which subjective probability is 
being discussed here. For example, Dr Smith, in section (c) of his talk, 
skilfully underlines an important point, namely this. The theory of 
subjective probability describes ideally consistent behaviour and 
ought not, therefore, be taken too literaUy. But there is evidence that 
today this particular idealization is a promising one for statistics. 

The comments I shall make just now are mainly stimulated by 
Professor Pearson's talk, which seemed particularly important and 
representative. 

It is disadvantageous to use the names of contemporaries to desig­
nate views and theories. In intellectual, as opposed to historical and 
biographical discussion, what particular individuals think is difficult 
to determine but of infinitesimal importance, and what they used to 
think ought to be nn infinitesimal of higher order. In particular, what 
I, and many other statisticians, call the Neyman-Pearson view may, 
for all I know, never have been held by Professor Neyman or by 
Professor Pearson, but it is a view widespread among other statistical 
theorists, especiaUy in America, but also here in England, in India, and 
elsewhere. A work excellently representing this view is Lehmann's 
(1959) book on testing hypotheses. 

If the theory of subjective probability does have a contribution to 
make to statistics, it is as an addition to, not a substitute for, the past 
half-century of rapid progress, as Professor Pearson wisely empha­
sized. Indeed, the new ideas could hardly have arisen but for the 
traditions to which we statisticians have been exposed. For example, 
though de Finetti has a wider and deeper knowledge and understand­
ing of the philosophy of probability than anyone else I know, he is not 

• Professor Savage was invited to open the discussion by commenting on 
the contributions in Part II. 
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close to statistical literature and practice and is therefore without a 
certain stimulus that we statisticians give each other. 

It is illuminating, and somewhat germane to Professor Pearson's 
talk, to reflect on the idea of choosing a power function from among 
those available. Once a specific model is accepted- and we all realize 
that this acceptance must not be too literal - there is fair general 
agreement that the power function (or perhaps more generally, 
operating characteristic) fully describes an experiment together with 
its statistical analysis. To decide what experiment to do and how to 
analyse it amounts schematically to choosing one among the many 
available power functions. Incidentally, when the experiment as well 
as the design is being chosen, each power function has its price to be 
taken into account. Excessive attention to the tautology that many 
problems of statistics are tantamount to choosing one among the set 
of available power functions has, I believe, interfered with our seeing 
an important road that leads through the objectivistic terrain to the 
theory of subjective probability. 

The situation is greatly clarified by the study of simple dichotomies. 
However rarely we meet simple dichotomies in nature, I ask you to 
feel with me that they are statistics in microcosm. F or all that I am 
about to say can be generalized directly to problems about any :finite 
number of simple hypotheses and any finite number of conclusions or 
decisions; nor do infmite sets present any unusual difficulties. The pro­
gramme is to talk about simple dichotomies in the prevailing, extra­
Bayesian, spirit so far as possible and thus to bring out clearly where 
and to what extent subjective probability enters as a step forward. 

Suppose then that one of two facts, / 0 or Ji, is the case. A wealth 
of experiments relevant lo deciding between lo and / 1 is available to 
you, and each of these experiments will ordinarily admit a wealth of 
analyses. You must, in this particular hypothetical example, choose 
one of two actions, one of which is appropriate to / 0 and the other to / 1• 

Thus, an analysis is simply a region of acceptance for lo· The available 
experiments would typically have various costs, but for a simple first 
approach suppose that they cost you nothing or, which comes to 
much the same thing, that they all cost the same. It is traditional, and 
I think correct, to say that yow· choice is a choice of one of the avail­
able power functions. Here a power function is simply a pair of 

/· 
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numbers (oc, {3), the probabilities of errors of the first and second kind. 
There seems to be agreement that your choice among the available 
pairs (oc, {3) must be made subjectively. Il is true that tlie minimax 
theory adduces a choice among the available pairs from cost con­
siderations alone, but it is not hard to see that this is a quite unreason­
able theory for simple dichotomies. 

Consider a graphical representation of the unit square of all pairs 
of enors {ex., {J). As is implicit in the idea of the errors of the first and 
second kind, no one wants to exchange a given position in this square 
for any position to the north-east of it; this expresses the principle of 
admissibility. The points in the square made available by any one 
experiment typically consist of a convex set connecting the two corners 
(I, 0) and (0, 1). The south-west boundary of the convex set is a curve 
connecting these two corners, and if you were confined to the set, 
you would surely choose some point on its south-west boundary, as 
the principle of admissibility requires. According to the Neyman­
Pearson lemma, these admissible tests are exactly the likelihood-ratio 
tests. The critical likelihood ratio in favour of/1 that gives rise to the 
likelihood-ratio test corresponding to a given point on the south-west 
curve is simply the negative of the slope of the curve at this point. 
This interesting and important fact is easy to verify. 

At this stage, it is traditional to conclude thus: Given the experi­
ment, the person will simply have to choose whichever critical likeli­
hood ratio results in the(oc, [3) pair that pleases him most among those 
available. Sometimes a little guidance is suggested to the effect that 
the person might like to require a to be a hundredth, or a twentieth, 
letting f3 then fall where it may. Presumably no one would vigorously 
defend this rule, so in practice, no firm advice beyond the principle of 
admissibility is generally offered for choosing among the available 
pairs (oc, [3). But Mr Lindley and I convinced ourselves several years 
ago that much more can be done, as will now be explained. 
· Turning back temporarily, let us think about your preferences 

among the points in the (oc, ,8)-square, in connection with some specific 
problem of choice. If P1 is south-west of P2 , then you will prefer P1 ; 

and no one can dispute any particular preference that does not violate 
this rule. Presumably, your preferences could be described by a 
system of indifference curves in the (oc, ,8)-square like those for various 

/· 
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combinations of bread and wine in the economics classroom. So far 
as bread and wine are concerned, indifference curves are notoriously 
highly arbitrary families of curves that reflect a vast latitude for 
possible subjective differences in preference. It is natural to leap to 
the conclusion that your indifference curves for points in the (a, {3)­
square are equally arbitrary. For example, Lehmann (1958) does 
accept that conclusion with its discow-aging implications. 

Fortunately, pairs of error probabilities are quite different from 
quantities of bread and wine. Suppose, for example, that you found 
yourself indifferent between one test and analysis culminating in the 
point P 1 and another test and analysis culminating in P 2• Being 
indifferent, surely you would not mind if someone else chose between 
these two procedures for you, and if he chose with the aid of a table 
of random numbers, that too should be indifferent to you. But to 
choose between these two procedures at random, with a specified 
probability, is, in effect, to create a third procedure with the error-pair 
P3 on the line segment from P1 to P2• Thus if P1 is indifferent to P2 

for you, then all of the points on the segment between them are too. 
Similar considerations of coherence culminate in the conclusion that 
your indifference curves must be parallel straight lines; nothing is 
left to your discretion save the choice of onenwnber, the slope of these 
lines. This slope is simply the rate at which you are willing to increase 
f3 per unit decrease in o:. In summary, your pref erenccs among pairs 
are largely subjective, but this subjective choice is not nearly so com­
plex as one might have thought; all is reduced to the choice of a slope 
or rate of exchange. Everything said here i.....-1 the name of simple 
dichotomies admits great generalization. In particular, where a pro­
cedure can be expressed in terms of many conditional probabilities 
of error rather than of two only, preference among these patterns is 
governed simply by constant rates of exchange, and the ii1difference 
loci are parallel linear manifolds. 

To mention an important criticism emphasized by Professor 
Pearson, you may fu1d it hard in practice adequately to specify the 
slope that applies in a given problem, but the difficulty of a choice 
does not make it escapable. Any decision you make will amount to a 
decision about your critical slope. Fortunately, you may not be called 
upon, in any one problem, lo fix the slope with much precision. As 
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will be explained later, you often need specify your rate of exchange 
only to within a factor of 5, 10, or even 100. 

Suppose now that you have approximately fixed your critical slope, 
and return to the problem of choosing a point on the south-we~t 
boundary of the set of error pairs made available by a fixed experi­
ment, that is, choosing a likelihood-ratio test. If you draw a sketch 
showing your parallel straight indifference curves and the convex 
curve connecting (1, 0) and (0, 1) that represents the family of all 
likelihood-ratio tests, the best likelihood-ratio test for you is plainly 
the one represented by the point where the south-west curve has for 
its slope your critical slope. This means that you prefer, no matter 
what the experiment was, to base a likelihood-ratio test on a critical 
likelihood ratio equal to minus your critical slope. If, for example, 
someone were to make available a larger experiment than the one 
originally envisaged, you would continue to use the same critical 
likelihood ratio, so your new preferred (a, {3), except for being smaller, 
would have no necessary relation to the old pair. In practice you may 
have quite a broad and diffuse interval of likelihood ratios that would 
leave you uncomfortable in making a decision. But, especiaUy if the 
experiment is fairly large, there is a good chance that the outcome 
would not fall within the border zone. Also, practical relief could come 
from the possibility of further experimentation or some other kind 
of hedging. 

Of course, had we started out as Bayesians with utilities and sub­
jective probabilities, we would have aITived at the conclusion about a 
critical slope immediately. Indeed, the derivation of the critical slope 
that I have sketched is, in effect, a derivation of subjeclive probabilities 
suitable for one who takes objective probabilities for granted but is 
sceptical of subjective ones. To sum up, not only for simple dicho­
tomies, but for all problems involving choice of power function or 
operating characteristic, any coherent system of choices wiU be 
governed by a critical likelihood ratio (or system of ratios). This 
system of critical likelihood ratios, in the presence of a definite cost 
structure, amounts to a subjective probability distribution. This prior 
distribution pertains to the whole ensemble of conceivable experi­
ments bearing on a given issue, unlike the idea of a critical~nd f3 for 
a specific experiment. There is, I feel, an important step forward here, 
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and it does not depend on anyone's ability really to name his subjective 
probabilities in detail. Noticing the strong arguments in favour of 
parallel, linear loci surely is not a step backward. When you ask 
yourself, as these arguments lead you to, how much more probable 
you consider/0 than/1> you are focusing on something that has strong 
intuitive meaning and is not complicated by the particular experiment 
at hand. Whereas, if you ask yourself, as it seems to me statistical 
theory has for a long time insisted you do, which point on a particular 
south-west boundary you prefer, your choice is no less subjective and 
difficult, and a needless element of compl ication and confusion has 
been introduced. 

It has been aptly said that the subjectivist's position is more objec­
tive than the objectivist's, for thesu bjectivist finds the range of coherent 
or reasonable preference patterns much narrower than the objectivist 
thought it to be. How confusing and dangerous big words axe! 

If yom problem is not to make a dichotomous decision but rather 
to say how some experiment already performed bears on whether it 
is/0 or / 1 that obtains, then, according to some tradition, the a or (:3 
(or both) of that likelihood-ratio test for which the experiment is just 
marginal would constitute a good summary. But, in the Bayesian 
view, this likelihood-ratio itself is a thorough summary, while the 
corresponding (a, (:3) is not. 

Dr H. Ru BEN: Professor Savage has critici;ced Stein's two-stage 
sampling procedure. I certainly agree with these criticisms, and in 
fact made similar ones from a non-Bayesian point of view in a dis­
sertation in 1950. Tlte difficulty of the problem appears to arise from 
the perhaps artificial objective of controlling the length of the con­
fidence interval absolutely rather than stochastically. It is, however, 
possible to modify the procedure so that the objections are to a con­
siderable extent met. 

Suppose that it is required to obtain confidence intervals of width 
2a for the mean. Let i; be the sample mean at the end of Stein's pro­
cedure and denote by P(u) the true confidence coefficient, as a fWlc­
tion of a, of the interval (x-a,x+a). Then it is highly likely that P(a) 
is a decreasing function of a. One may estimate say an upper Jimit 
to a from all the data, and thereby obtain an estimated confidence 
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coefficient that is in a sense better than Stein's nominal confidence 
coefficient in which information about a contained in- the second 
sample is rejected. 

Professor G. A. BARNARD: As I understand it, Professor Savage is 
prepared to accept that the probabilities which enter into the likeli­
hood factor in Bayes's theorem are commonly known with greater 
precision than the probabilities which enter into the prior distribution. 
It might, therefore, if this is accepted, generally be advisable to dis­
tinguish these first probabilities by calling them likelihoods, as 
opposed to the probabilities entering into the prior factor which might 
be called prior probabilities or some other name, such as acceptibil­
ities, plausibilities, etc. Does he agree? 

SA v AGE: It seems to me that Professor Barnard is calling attention 
to the need for two apt names. First there is the probability of a datum 
given a hypothesis (or parameter value), regardless of whether this 
probability is public or private, or clear or vague. I would not call 
these probabilities likelihoods, simply because 'likelihood' is pre­
empted in my usage and that of many others for something a little 
different. Perhaps' structural probability' would be a good expression 
for the probability of a datwn given a parameter value. 

A word for probabilities that are relatively sharp and public as 
structural probabilities usually are is also needed, but not one sug­
gesting that such probabilities are necessarily different in principle 
from more vague and more priva te ones. Perhaps something like 
'model probability' would serve. 

Professor M. S. BARTLETT: I agree with Professor Savage that it 
would be useful to have a new name, and of course in the literature 
there have been different symbols. For example, Carnap has used what 
substantially amounts to the same sort of distinction as here, using p 1 

and p 2 for two kinds of probability. Writing quite a long time ago in 
discussing some of Jeffreys's work, I used P for degrees of belief, and 
p for probabilities appearing as statistical probabilities or chances, 
over which there was complete agreement. 
Dr I. J. G ooo: It seems to me that one set of probabilities are tauto­
logical probabilities. They are probabilities whose values are assigned 
by definition of a statistical hypothesis. 

'\\ ________ ..:._....:::.====~ 
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SA v AGE: Of course, many discussions and calculations in which we 
use the word probabi lity are pw·e mathematics - they are schematic 
only-even when they are done with a view to immediate application. 
But it is anything but tautological to say that the errors made by a 
particular balance are normally distributed arow1d the true weights 
with an unknown variance. It takes a lot of judgement to make such 
a statement responsibly, and we aU know that this judgement can 
easily be wrong. 

BARNARD: Is it not a question of what we mean when we say that 
the posterior probability of A is such and such? Here A is the state­
ment that certain events have certain probabilities, and this is really 
the starting point for the discussion. You may say that we agree that 
this balance has a normal ly distributed !)et of errors. If we do not 
agree with that, we do not know what we are talking about when we 
say that the probability of this parameter value is such and such; nor 
do you know what you mean when you say that the statement has a 
posterior probability of so and so. You must know what the statement 
means, as well as knowing what its probability is. 

SAVAGE: Yes. 

BARNARD: The point I am trying to make is that we are discussing 
the posterior probabilities of hypotheses. By hypotheses we mean 
statements which specify probabilities. There are two levels of prob­
ability, the level which appears in the hypothesis and the level when 
we talk about the posterior probability of the hypothesis. I am sug­
gesting it would be worthwhile to distinguish these two levels by 
different names. 

SAVAG.E: I have the impression that you want me to discuss the 
meaning of such a proposition as this: 'The number of heads in the 
next thousand tosses of this coin is governed by a binomial distribu­
tion of unknown probability P.' According to the viewpoint that I 
have learned from de Finetti, this statement translates thus :' l regard 
any sequence of heads and tails that this coin might produce as 
equiprobable for me with any permutation of the sequence.' Briefly, 
the tosses of the coin are 'exchangeable•. 

I often prefer to use the original, perhaps misleading statement 
about unknown probabilities, because it is famiJiar and also because 
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Greminds us of an important mathematical truth about exch.angeabJe 
vents. As de Finetti has pointed out, no one is so Copernican as to 
frain from saying, 'The s1m is rising.' -
Incidentally, it is in view of de Finetti's analysis of exchangeable 

events that I think it unnecessary to seek a theory of frequency prob-
ability. Whether such a search has succeeded or will succeed is still 
another question. But ~Ulyone who thinks that a frequency theory of 
probability is called for by common sense should at least familiarize 
himself with the elements of the theory of exchangeable events. An 
introduction is given in my book(Savage, 1954, section3.7). The main 
reference is de Finetti (1937), and a relatively new and mathematically 
fancy reference is Hewitt and Savage (1955). 

BA RN A RD: Can we agree that when the prior probabilities are 
smooth, your posterior probabilities are what many of us call likeli­
hoods, and behave in mathematically the same way ? 

SAVAGE: When the prior probabilities are smooth, in the right sense, 
a good approximate posterior distribution is the normalized likeli­
hood function. But, in an ordinary estimation of a variance, for 
example, one might feel that a2 times the prior density of a2 is the 
function that is smooth. This is analogous to Jetfreys's policy of taking 
the logarithm of a2 rather than a2 itself to be uniformly distributed. 
In such a case, the natural approximate posterior distribution is not 
identical with the likelihood. For my own part, even where the two 
happen to be the same in fact, I prefer to think of them as conceptually 
different. 

BARNARD: One reason for the difference is that you phrase Bayes's 
theorem in the form of proportionality. To get the likelihood to add 
up to one you divide by the proportionality factor; you can always do 
that if you want to. 

Gooo: Since a previous speaker has described subjective probabilities 
as ' metaphysical' I should like to say that all probabilities seem to me 
to some extent metaphysical. That is to say that in all cases, wl1atever 
type of probability we care to use, we behave and talk as if these things 
existed. This applies both to subjective probabilities and to physical 
probabilities. Most of us probably think about a biased coin as if it 
had a physical probability. Now whether it is defined in terms of fre-
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quency or just falls out of another type of theory, I think we do argue 
that way. I suspect that even the most extreme subjectivist such as 
de Finelti would have to agree that he did sometimes think that way, 
though he would perhaps avoid doing it in print. I do not think there 
is all that much distinction between the metaphysical status of sub­
jective and physical probabilities. You can arrive at the numerical 
value of a physical probability by means of a repeated experiment in 

which you gradually modify the subjective probability and in that way 
you can measure your physical probability in terms of subjective 
probabilities. 

Savage has shown that a rational man behaves as if he used subjec­
tive probabilities. A rational man will also presumably behave as if he 
thought the world behaves as if there are physical probabilities. When 
he measures these physical probabilities he will behave as if they were 
limiting values of his subjective probabilities. Thus both types of pro­
bability are metaphysical, and perhaps everything is. I mean we use 
language and behave as if we bad various opinions. 

Mr D. V. LIND LEY: I think we ought to look carefully at the situa­
tions that the subjectivist seems to analyse differently from the way 
that most of us have been taught to use. One of these situations, des­
cribed by Professor Savage in Part I, concerns optional stopping. He 
gave a very pertinentdiscussionofwhathappens when we have six suc­
cesses out of a hundred. I am disappointed that none of the other 
speakers has been tempted to reply to this, to say whether he would 
agree with Professor Savage or not. Is there for instance someone who 
feels that he wants to use estimates that take account of the stopping 
rule? 

BA RTLETT: I am not going to answer the question completely, but 
there is one small point I should like to make. Certainly I agree that 
unbiased estimates are unimportant. And in the particular problem, 
I have pointed out before if you have six successes out of a hundred 
in an ordinary fixed-sample-size situation, you take 6/100 as the 
sufficient statistic that happens to be unbiased and carries the maxi­
mum information. If you have inverse sampling, it seems to me that 
certainly you should take 100/6 as your unbiased estimate of l /p, 
which is sufficient and carries the maximum information in the 
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inverse sampling case. You have to take 5/99 to get an unbiased 
estimate of p . I should like to think about the gen~ral question 
further though. 

Dr P. ARMITAGE : I think it is quite clear that likelihood ratios, and 
therefore posterior probabilities, do not depend on a stopping rule. 
Professor Savage, Dr Cox and Mr Lindley take this necessarily as a 
point in favour of the use of Bayesian methods. My own feeling goes 
the other way. Ifecl that if a man deliberately stopped an investigation 
when he had departed sufficiently far from his particular hypothesis, 
then 'Thou shalt be misled if thou dost not know that'. If so, prior 
probability methods seem to appear in a less attractive light than 
frequency methods, where one can take into account the method of 
sampling. T should like Professor Savage to clarify a point he made in 
Part I. He remarked that, using conventional significance tests, if you 
go on long enough you can be sure of achieving any level of signific­
ance; does not the same sort ofresult happen with Bayesian methods? 
The departure of the mean by two standard errors corresponds to the 
ordinary five per cent level. It also corresponds to the null hypothesis 
being at the five per cent point of the posterior distribution. Does 
it not follow that by going on sufficiently long one can be sure of 
getting the null value arbitrarily far into the tail of the posterior dis­
tribution ? 

SAVAGE: T he answer is surely no, under any interpretation. It is 
impossible to be sure of sampling until the data justifies an unjustifi­
able conclusion, just as surely as it is impossible to build a perpetual­
motion machine. After all , whatever we may disagree about, we are 
surely agreed that Bayes's theorem is true where it applies. But to 
understand this impossibility let us examine first a simple case. 

Consider an urn that contains three red balls and a black one or 
three black balls and a red one. To convince you of the first hypothesis 
as opposed to the second, for some given purpose, would mean to 
make the likelihood ratio in favour of the first sufficiently large, say 
at least 10. Suppose that I, in my zeal, decide to keep sampling (with 
replacement) until the likelihood ratio, which in this particular case is 
3r- b, exceeds 10. This will happen if and only ifl sometimes succeed 
in drawing three more red balls than black ones; if there are really 
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three black balls and a red one, it is quite probable that I never will 
succeed until the end of time. In fact, the probability of failure in this 
unfavourable circumstance is at least 9/10, as it ought to be on general 
principles; the exact value is 26/27. 

As I understand it, Dr Armitage is particularly interested in the 
following sort of example. The prior distribution of a parameterµ. is 
rather broadly distributed around 0, and observations ofµ. with unit 
standard deviation are sequentially available. From 'your ' point of 
view, that is, the point of view summarized by the assumed prior 
distribution, what is the probability P that I should succeed in samp­
ling until your posterior odds that µ. is positive are at least 10 times 
your initial odds thatµ. is positive, ifµ. is in fact negative ?There can be 
no escape from the simple general formula thatP is at most a tenth, 
but there might be some momentary misunderstanding of the meaning 
of that formula. 

Ifµ. is not negative, and I sample with a determination to raise your 
odds in favour of the proposition thatµ. is positive by large factor, I 
am of course sure to succeed. Still more, if fl is only very slightly 
negative, then, with determination I am almost sure to succeed in 
convincing you thatµ. is positive. This may at first seem objectionable, 
but you must not forget that 'you' felt very sure at the outset that µ. 
was not close to 0, so the general conclusion that you are not trnduly 
likely to be fooled has not been upset. 

If optional stopping is irrelevant to the analysis when we have 
well-defined probabilities to work with, ought we to expect it to affect 
a reasonable analysis of the data when the prior probabilities happen 
to be vague? No example strongly pointing toward an affirmative 
answer has yet been adduced. 

Dr D. R. Cox: In the problem of the sign ilicance test, it seems to me 
that the Bayesian argument attains independence of the sampling 
rule by answering a somewhat different question from that we usually 
think about. Suppose that the null hypothesis is 0 = 0 and that we do 
some sort of optional stopping and end up with a very small x and a 
very large n. Now, as I understand the Bayesian point of view, the 
prior distribution must be fixed and independent of n; we have some 
prior probabiJity at 0 = 0 and the remainder distributed in some way 



74 THE FOUNDATIONS OF STATISTICAL INFERENCE 

over the non-zero values of 8. If we ask the question ' Is Bzero or not?', 
we have in this case only two effecLive possibilities: either B = 0, or() 
lies in a narrow band of width roughly 1/ v'n near 0. But the Bayes 
approach seems to me to have partly prejudged the issue by assigning 
very small prior probability to this latter band; it says that if Bis not 
zero, it is very unlikely to be in any particular narrow range. I think 
that putting in a prior distribution is causing us to answer a different l 
question from 'Are or are not the data consistent with B = 0?' Now, 
of course, a further point often comes in that one says very small values 
of B are practically unimportant and can be identified with the value 
of zero. That is a different issue. I think that the consideration of tail 
areas does enable us to deal with the question of consistency with a 
null hypothesis, without prejudging the issue by putting down a prior 
distribution that effectively excludes the possibility of a very small 
non-zero value of B. 

Gooo: A possible weakness in the use of the Bayes approach is in 
having a function which is smooth all the way to zero. It may be that 
thedensiryfunctionshould tend to infinity, which inprincipfocertainly 
comes closer to Dr Cox's case, so that after say, 10100 observations you 
would be able to say 8 is very slightly different from zero. An assump­
tion about a prior distribution that seems reasonable for a moderate 
size of experiment may not be advisable if you are going to do a very 
big experiment. You so to speak oversimplify because you know in 
advance that you are not going to do more than say a million experi­
mental trials. 

S A v AGE: What is essential to theBayesianpoint of view, or approach, 
for the class of problem under discussion, is this. We believe that some 
prior distributions for the parameter B will lead exclusively to beliefs 
and behaviour that you would regard as reasonable for the given 
situation. Since a tail area analysis, being in conflict with the likelihood 
principle, is not compatible with any prior distribution, and since the 
analogue of such an analysis is clearly contraindicated i11 exaggeratedly 
simple problems like simple dichotomy, we think it must be 
wrong. 

To be sure, the particular kinds of prior distribution thus far men­
tioned in connection with hypothesis testing during tills conferenqe 
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are not appropriate to all, or even to many, practical situations. Often, 
as you show, my actual prejudice against the parameter's lying 
near but not at the origin is less than a certain naive model of my prior 
distribution would suggest, so that this model does not give a faithful 
image of my opinion in such a situation. To conclude from the inap­
propriateness of one kind of prior distribution that we should take 
seriously a procedure incompatible with all prior distributions seems 
to me to go fmther than is justified. The Bayesian theory does not yet 
have models ofall, or even most, oft he situations traditionally treated 
by hypothesis testing, but better analyses have not, to my knowledge, 
been demonstrated outside of Bayesian statistics. 

BARNARD: I have been made to think further about this issue of the 
stopping rule since I first suggested that the stopping rule was irrele­
vant (Barnard, 1947a, b). This conclusion does not follow only from 
the subjective theory of probability; it seems to me that the stopping 
rule is irrelevant in certain circumstances. Since 1947 I have had the 
great benefit of a long correspondence - not many letters because they 
were not very frequent, bu tit went on over a longtime-with Professor 
Bartlett, as a result of which I am considerably clearer than I was 
before. My feeling is that, as I .indicated [on p. 42), we meet with two 
sorts of situation in applying statistics to data. One is where we want 
to have a single hypothesis with which to confront the data. Do they 
agree with this hypothesis or do they nol? Now in that situation you 
calUlot apply Bayes's theorem because you have not got any alterna­
tives to think about and specify - not yet. I do not say they are not 
specifiable- they are not specified yet. And in that situation it seems 
to me the stopping rule is relevant. 

In particular, suppose somebody sets out to demonstrate the 
existence of extrasensory perception and says 'I am going to go on 
until I get a one in ten thousand significance level'. Knowing that this 
is what he is setting out to do would lead you to adopt a different test 
criterion. What you would look at would not be the ratio of successes 
obtained, but how long it took him to obtain it. And you would have 
a very simple test of significance which said if it took you so long to 
achieve this increase in the score above the chance fraction, this is not 
at all strong evidence for E.S.P., it is very weak evidence. And the 
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reversing of the choice of test criteria would I think overcome the 
difficulty. 

This is the answer to the p oint Professor Savage makes; he says why 
use one method when you have vague knowledge, when you would 
use a quite different method when you have precise knowledge. It 
seems to me the answer is that you would use one method when you 
have precisely determined alternatives, with which you want to com­
pare a given hypothesis, and you use another method when you do 
not have these alternatives. 

SA v AGE: May I digress to say publicly that l learned the stopping­
rule principle from Professor Barnard, in conversation in the summer 
of 1952. Frankly, I then thought it a scandal that anyone in the pro­
fession could advance an idea so patently wrong, even as today I can 
scarcely believe that some people resist an idea so patently right. I am 
particularly surprised to hear Professor Barnard say today that the 
stopping rule is irrelevant in certain circumstances only, for the 
argument he first gave in favour of the principle seems quite unaffected 
by the distinctions just discussed. The argument then was this: The 
design of a sequential experiment is, in the last analysis, what the 
experimenter actually intended ro do. His intention is locked up 
inside his head and cannot be known to those who have to judge the 
experiment. Never having been comfortable with that argument, I 
am not advancing it myself. But if Professor Barnard still accepts it, 
how can he conclude that the stopping-ru le principle is only sometimes 
valid? 

BARNAR o: If I may reply briefly to Professor Savage's question as to 
whether I still accept the argument I put to Professor Savage in 1952 
(Barnard, 1947a), I would say that I do so in relation to the question 
then discussed, where it is a matter of choosing from among a nw11ber 
of simple statistical hypotheses. When it is a question of deciding 
whether an observed result is reasonably consistent or not with a single 
hypothesis, no simple statistical alternatives being specified, then the 
argument cannot be applied. I would not claLm it as foresight so much 
as good fortw1e that on page 664 of the reference given I did imply 
that the likelihood-ratio argument would apply' to all questions where 
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the choice lies between a finite number of exclusive alternatives•; it is 
implicit that the alternatives here must be statistically specified. 

SAVAGE: The question of imprecisely determined alternatives is 
provocative, but in the example of scores on a test for extrasensory 
perception, it seems to me that the alternatives are quite well specified. 
If the subject's mean score is not that of the null hypothesis, it is 
somewhat different, presumably higher. Something like section (d) 
of Dr Smith's contribution should apply, except that accow1t should 
be taken of the fact that if there is any E.S. P. at all we expect it to be 
very small from general experience. 

A valuable thing brought out by Professor Barnard's comments here 
and elsewhere is that often we are not only vague as to how our 
opinion is distributed over the possibilities but even vague as to what 
the possibilities are. 

Gooo: What I call the device of imaginary results is relevant to the 
previous discussion. Usually we think of an argument from initial or 
prior probabilities and likelihoods to final probabilities and statistical 
inference. But if one takes the notion of consis tency seriously it is just 
as legitimate to argue the other way. The words prior and posterior, 
or initial and final, might mislead one into forgetting this fact. 

That is to say you can imagine certain possible final results of an 
experiment and then use 13ayes's theorem in reverse in order to find 
out what your initial or prior judgements must be for the sake of 
consistency. For instance, to take a very simple example first, imagine 
an experiment in E.S.P. in which someone guesses forty consecutive 
cards correctly, each card having say five possibleequaUy likely forms. 
You know that the likelihood of that on the null hypothesis, which is 
that there is no E.S.P. present and that the experiment is carried out 
honestly and accurately, etc., with no conscious or unconscious 
cheating, is 5- 40. Now if that happened would you or would you not 
believe that the man bad power of extrasensory perception? If you 
would, then this tells you that the initial probability must exceed 5- 4o 
and you have discovered something about your actual state of mind 
without actually doing the experiment. You merely imagine that this 
experiment could be performed. Likewise, in this discussion of tbe 
stopping rule, suppose you are estimating a probability near a half. 

--
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You might imagine that you have done up to say a thousand trials and 
if that is the sort of thing you had in mind before you started experi­
menting you will probably be satisfied to use as a distribution when p 
is not a half, something roughly uniform, though possibly concen­
trated in a narrow interval coveringp =i. I do not think you can use 
a uniform distribution going the whole way from p = 0 top = 1, if it 
is a question of the bias of a coin; for example, you mjght use some­
thing w1iform in a rather narrow range or something like pa (1-p)°' to 
make it smooth. But at the back of your mind you have the idea that 
you are going to do an experime11t of reasonable size. However, if you 
were told that the experiment might become enormously large, and 
if you can imagine some possible results of an experiment of that size, 
you may decide that you would accept E.S.P. even if p were very close 
tot. Now if the sigma-age were greater than, say, l 0, or something like 
that, you would have to think awfully carefully. If you were really 
doing this experiment you would have to think of a great many pos­
sible results of the experiment to make sure that you were being con­
sistent; and if you did that, then it may well be that you would decide 
to use a very curious sharply peaked prior distribution. But I think you 
might well come round to advance the view that if on tail area prob­
abilities the chance was as small as 10- 10 this would still not be 
evidence in favour of E.S.P. But after it really happened, you might 
begin to doubt your original judgements. So you must try to think out 
in advance and decide on a prior distribution which would enable you 
to be consistent whatever happens. That is in theory. It might be very 
difficult. You do not need more than one test depending on the inten­
tions of the experimenter. In principle you must think of all possibilit­
ies and then decide on a single test which will depend on a single prior 
distribution. 

Mr C. B. WIN STEN: What I was going to say is so closely related to 
what Dr Good was saying that I hasten to fol low him as closely as I 
can. I, too, want to emphasize that one often may learn about' initial 
probabilities' from final probabilities, and I feel this affects the argu- / 
ment quite considerably. Sometimes, as in simple urn experiments, 
one deduces'fi.nal probabilities from initial probabilities. On the other 
hand, one can imagine a situation like that D r Good has just described 
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in which one has a set of hypotheses which we can call H 1, H 2, H 3, 

say, and one can suppose a set of observations producing likelihoods, 
/1> !2, 13. Then one can imagine an observer being given a set of likeli­
hoods, and lhen being asked which ratio of experimentally obtained 
likelihoods for hypotheses 2 and 3 he would accept as establishing 
these hypotheses as having about equal credence, or acceptability, or 
posterior probability. As a result of this procedure one is establishing 
the 'prior probabilities', if one can call them that. The content of 
Bayes's theorem in this situation is, however, completely different from 
that in the urn case; indeed, it seems to me mistaken even to pose the 
whole thing as being an application of Bayes's theorem. Instead of 
saying that the posterior probability is proportional to prior prob­
ability times likelihood, one is deducing from the observer's rating of 
the likelihood scales what weights are needed to establish equal 
posterior belief. 

The term 'weight' is preferable to the term 'probability' because 
if one is going to use the term probability for something which you 
obtain from this merging of the likelihood scales, then one must be 
visualizing carrying out a further experiment later. The numbers one 
is going to obtain from the weights and the likelihood ratios of the 
present experiment are then going to be used as weights for the likeli­
hoods of the next experiment. And only in that situation is it in fact 
worthwhile to try and set up what one might call an analogue of 
Bayes's theorem. Otherwise it seems to me that one simply tries to 
discover somebody's degrees of belief from his scaling of the likelihood 
function. In that situation it seems to me that one should not really 
even mention Bayes's theorem. One should mention the correspond­
ing formula as a possible summary of the ways in which people treat 
a summing up of a likelihood choice criterion. 

I do not know whether in some situations one could get inter­
mediatecases. I wonder in the light of this whether Professor Barnard's 
distinction between acceptabilities and probabilities is concerned with 
whether one can carry out a particular sort of numerical analysis on 
the choices between likelihoods. 

BARN A RD : To come back to this point about likelihood and normal­
ization, and in a way back to the general issue, Professor Savage, as I 
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understood him, said earlier that a difference between likelihoods and 
probabilities was that probabilities would normalize because they 
integrate to one, whereas likelihoods will not. Now probabilities 
integrate to one only if all possibilities are taken imo account. This 
requires in its appl ication to the probability of hypotheses that we 
should be in a position to enumerate all possible hypotheses which 
might explain a given set of data. Now I think it is just not true that 
we ever can enumerate all possible hypotheses. We must always leave 
it open that someone with more imagination, or more knowledge, or 
more information can come along later and suggest an explanation of 
the fact with which we are confronted that we just had not thoughtofat 
all. If this is so we ought to a llow that in addition to the hypotheses 
that we really consider we should allow something that we had 
not thought of yet, and of course as soon as we do this we lose the 
normalizing factor of the probability, and from that point of view prob­
ability has no advantage over likelihood. This is my general point, 
that I think while I agree with a lot of the technical points, I would 
pref er that this is talked about in terms of likelihood rather than prob­
ability. I should like to ask what Professor Savage thinks about that, 
whether he thinks that the necessity to enumerate hypotheses ex­
haustively, is important. 

SA v AGE: Surely, as you say, we cannot always enumerate hypotheses 
so completely as we like to think. The list can, however, always be 
completed by tacking on a catch-all 'something eJse '. Jn principle, a 
person will have probabilities given 'something else' just as he has 
probabilities given other hypotheses. In practice, the probabiJity of a 
specified datwn given 'something else' is likely to be particularly 
vague - an unpleasant reality. The probability of' something else' is 
also meaningful of course, and usually, though perhaps poorly defined, 
it is definitely very small. Looking at things this way, I do not find prob­
abiliLies unnormalizable, certainly not altogether unnormalizable. 

Whether probability has an advantage over likelihood seems to me 
like the question whether volts have an advantage over amperes. The / 
meaninglessness of a norm for likelihood is for me a symptom of the 
great difference between likelihood and probability. Since you ql!es-
tion that symptom, I shall mention one or two others. 
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First, if we have a probability density of a parameter o:, say p(cx), 
and reparameterize using, for example, {:3 = IX3 as the new parameter, 
then the density of {:3 at the value corresponding to IX is tp(1X)/01.2. But 
if Pr(xlo:) is a likelihood in IX, lhe likelihood in {:3 at {:3 =o:3 is simply 
Pr(xlo:). Again suppose that xis known to have a Poisson distribution 
with mean o: - 1 and that x = 0 is observed. The likelihood is then 
exp(-o:- 1), and it is hard to see how thal fwiction, which approaches 
1 as IX~ ex:>, could be interpreted as a probability density. The essence 
of the example is preserved, and the idea of continuous distribution is 
avoided, if o: is assumed to be confined to positive integral values. 

On the more general aspect of the enumeration of all possible 
hypotheses, I certainly agree that the danger of losing serendipity by 
binding oneself to an over-rigid model is one against which we cannot 
be too alert. We must not pretend to have enumerated all the hypo­
theses in some simple and artificial enumeration that actually excludes 
some of them. The list can however be completed, as I have said, by 
adding a general 'something else' hypothesis, and this will be quite 
workable, provided you can tell yourself in good faith that' something 
else' is rather improbable. The 'something else' hypothesis does not 
seem to make it any more meaningful to use likelihood for probability 
than to use volts for amperes. 

Let us consider an example. Off hand, one might think it quite an 
acceptable scientific question to ask, 'What is the melting point of 
californium?' Such a question is, in effect, a list of alternatives that 
pretends to be exhaustive. But, even specifying which isotope of 
californitun is referred to and the pressw·e at which the melting point 
is wanted, there are alternatives that the question tends to hide. It is 
possible that californium sublimates without melting or that it 
behaves like glass. Who daresay what other alternatives might obtain? 
An attempt to measure the melting point of californium might, if we 
are serendipitous, lead to more or less evidence that the concept of 
melting point is not directly applicable to it. Whether this happens or 
not, Bayes's theorem will yield a posterior probability distribution 
for the melting point given that there really is one, based on the corre­
sponding prior conditional probability aud on the likelihood of the 
observed reading of the thermometer as a fwiction of each possible 
melting point. Neither the prior probability that there is no melting 

F 
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point, nor the likelihood for the observed reading as a function of 
hypotheses a lternative to that of the existence of a melting point enter 
the calculation. The distinction between likelihood and probability 
seems clear in this problem, as in any other. 

BAR NARD: Professor Savage says in effect, 'add at the bottom of the 
list H 1, H 2, ••• "something else" ' . But what is the probability that a 
penny comes up heads given the hypothesis 'something else'. We do 
not know. What one requires for this pw·pose is not just that there 
should be some hypotheses, but that they should enable you to com­
pute probabilities for the data, and that requires very well defined 
hypotheses. For the purpose of applications, I do not think it is 
enough to consider only the conditional posterior distributions 
mentioned by Professor Savage. 

LINDLEY: I am surprised at what seems to mean obvious red herring 
that Professor Barnard has drawn across the discussion of hypotheses. 
I would have thought that when one says this posterior distribution is 
such and such, all it means is that among the hypotheses that have 
been suggested the relevant probabilities are such and such; con­
ditionally on the fact that there is nothing new, here is the posterior 
distribution. If somebody comes along tomorrow with a brilliant new 
hypotheses, well of cow·se we bring it in. 

BARTLETT: But you would be inconsistent because your prior 
probability would be zero one day and non-zero another. 

LINDLEY: No, it is not zero. My prior probability for other hypo­
theses may be E. All I am saying is that conditionally on the other 
1- E, the distribution is as it is. 

BARNARD: Yes, but your normalization factor is now determined 
by E. Of course E may be anylhing up to I. Choice of letter has an 
emotional significance. 

LI NDLEY: I do not care what it is as long as it is not one. 

BARNARD: In that event two things happen. One is that the normalis­
ation has gone west, and hence also this alleged advantage over 
likelihood. Secondly, you are not in a position to say that the posterior 
probability which you attach to an hypothesis from an experiment 
with these unspecified alternatives is in any way comparable with 
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another probability attached to another hypothesis from another 
experiment with another set of possibly unspecified alternatives. This 
is the difficulty over likelihood. Likelihood in one class of experiments 
may not be comparable to likelihood from another class of experi­
ments, because of differences of metric and all sorts of other differ­
ences. But I think that you arc in exactly the same difficulty with 
conditional probabilities just because they are conditional on your 
having thought of a certain set of alternatives. It is not rational in 
other words. Suppose I come out with a probability of a third that the 
penny is w1biased, having considered a certain set of alternatives. Now 
I do another experiment on another penny and I come out of that case 
with the probability one third that it is unbiased, havil1g considered 
yet another set of alternatives. There is no reason why I should agree 
or disagree in my final action or inference in the two cases. I can do 
one thing in one case and another in another, because they represent 
conditional probabilities leaving aside possibly different events. 

LINDLEY: All probabilities arc conditional. 

BA RN A Ro: I agree. 

LINDLEY: If there are only conditional ones, what is the point at 
issue? 

Professor E. S. P EA RSON : I suggest that you start by lmowing 
perfectly well that they are cond itional and when you come to the 
answer you forget about it. 

BARN A RD: The difficulty is that you are suggesting the use of prob­
ability for inference, and this makes us able to compare different sets 
of evidence. Now you can only compare probabilities on different sets 
of evidence if those probabilities are conditional on the same set of 
assumptions. If they are not conditional on the same set of assump­
tions they are not necessarily in any way comparable. 

LrNDLEY: Yes, if this probability is a third conditional on that, and 
if a second probability is a third, conditional on something else, a 
third still means the same thing. I would be prepared to take my bets 
at 2 to I. 

BARNARD: Only if you knew that the condition was true, but you 
do not. 
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Gooo: Make a conditional bet. 

BAR NARD: You can make a conditional bet, but that is not what we 
are aiming at. 

WrNSTEN: You are making a cross comparison where you do not 
really want to, if you have got different sets of initial experiments. One 
does not want to be driven into a situation where one has to say that 
everything with a probability of a third has an equal degree of credence. 
I think this is what Professor Barnard has really said. 

BAR N A RD: It seems to 111e that likelihood would tell you that you lay 
2 to 1 in favour of H 1 against H 2, and the conditional probabilities 
would be exactly the same. Likelihood will not tell you what odds you 
should Jay in favour of H 1 as against the rest of the w1iverse. Prob­
ability claims to do that, and it is the only thing that probability can 
do that likelihood cannot. 

SAVA GE: I agree very much with Mr Lindley in this discussion. As I 
said in my remarks [onp. 80), in so far as I am interested in probabilities 
conditional on 'not something else', neither the probability of' some­
thing else' nor the probabilities conditional on this hypothesis are 
relevru1t. Also, it is not precluded that I should have· probabilities 
given the hypothesis 'something else'; the operational meaning of 
such probabilities is the same as that of any others, though they are 
likely to be particularly intuitive as opposed to reasoned. 

Cox: I wish to make a technical comment on the idea of a simple 
test of a null hypothesis. Suppose that our simple null hypothesis says 
that the density of the observations isj0(x), and that the test consists 
in calculating the function t(x) and regarding large values of t(x) as 
evidence against a null hypothesis. Suppose we consider the following 
family of hypotheses: 

fo(x) = fo(x)e81<x>Jf fo(x)e81<x>dx. 

That is a family of hypotheses depending on the parameter 8; when 
8 = 0 it reduces to the nul I hypothesis. Clearly the uniformly most 
powerful test of 8 = 0 is based on large values oft. Thus the choice of 
the statistic t is mathematically equivalent to postulating a family of 
alternative hypotheses. Correspondingly, this general class of alterna-

\ 
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tives for all /leads to a class of simple tests of significance. So I suggest 
that the distinction between setting up families of alternatives and 
using a s imple test of significance is primarily a verbal distinction. ll 
may still be important, but th.ere is no working difference between the 
two in the end; of course the argument cuts both ways. 

:BARN ARD: That would suggest that Daniel Bernoulli was concerned 
with hypotheses which said that the probability of getting particular 
configurations of the poles of the planets was some sort of function 
eow, where w is the area of the smallest circle on the sphere which will 
enclose them all. Now this is clearly not what he had in mind, is it? 

SEVERAL SPEAKE RS: But it Jeads to an identical answer. 

:BAR NARD: All he had in mind it seems to me was that if the planets 
really lie close together, that is something which could probably be 
explained dynamically, and he very legitimately said, before we start 
doing this, before we construct alternatives, let us see if we need to. 
Let us try the simple single hypothesis first. If the data do not fit that, 
then it is worth while going ahead. If it is consistent with the data let 
us not waste our time. 

PEARSO N: But he had a certain kind of alternative in mind. I do not 
think you need be able to define the hypotheses precisely. You can 
choose the test without that. If he had in mind the alternative that 
there was some sort of repulsion, so that the poles would have got as 
far apart as possible, he would probably have used another kind of 
test. So the alternatives were affecting the test he used. 

BAR NARD: Yes, I quite agree with that, but the alternatives which 
were affecting the test were not statements of probabilistic hypo­
theses. Therefore I think we in fact agree that significance tests are 
sensible things to do . . 
BARTLETT: I think this is a point that Professor Anscombehas made 
also. If you have rather vague allernatives you can justify classical 
tests of significance. 

WJNSTEN: I would like Lo return to the question of Dr Good's 
and my remarks. Is measw·ing prior probability from how different 
people react to different likelihoods different from proceeding in 
Professor Savage's way, before the experiment starts? 
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SA VA GE: It is not different in the sense of referring to different kinds 
of proba bility. But it is very valuable to be reminded that if one takes 
consistency very seriously it is equally legitimate to argue in either 
direction . 

Mr R. SY SKI: I would like to add that the use of the Bayes approach 
was defended by the Polish mathematician H. Steinhaus as early as 
1950. Since then, he and his followers have pubUshed several papers 
dealing with fw1damcntals and industrial applications (Steinhaus, 
1950, 1954; Rajski, 1954, 1958). 

On the lighter side of the subject it may be of interest to mention 
that behind the Iron Curtain Bayes's hypothesis has been mixed up 
with political implications. Probability Theory as such presents 
ideological difficulties for communism. See, for example, a curious 
statement by Gnedeoko and Kolmogorov (1954, p. l), which reads: 
' In fact, all epistemologic value of the theory of probability is based 
on this: that large-scale random phenomena in their collective action 
create strict, non-random regularity.' Using Baycs's hypothesis, 
Steinhaus and others overcame this 'official ' interpretation, and thus 
provided possibilities for the unhampered development of Probability 
Theory. 

Finally, I wish to ask how far the theory of Subjective Probability 
is modified, if at all, when events are specified by abstract valued 
random variables. There are here several intrinsic difficulties and 
much depends on the topology of the range space. 

SA v AGE: Your final question is a mathematical one rather apart 
from the main themes of discussion here. To say something about it, 
de Finetti has always maintained that countable additivity and the 
attendant restriction of measures to a-algebras of events are not an 
essential part of the probability concept. He makes a good case for 
the idea that probabilities should in principle be thought of as defined 
for all events. In consequence, many of the mathematical incon­
veniences of strange range spaces that have been discovered in recent 
years seem to drop away as side issues. 

BARNARD: Can I follow that with a question about de Finetti's 
attitude to the non-simply additive random distribution on the sphere. 
I mean Hausdorff's example (Borel, 1926) in which almost the whole 
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sphere is divided into three mutually exclusive sets, A, Band C, such 
that A is congruent to B (in the sense that a rigid rotation of the sphere 
will make A coincide with B), and B to C. The extraordinary 
feature is that the set A is also congruent to the union of B and C. 
This shows that you canJ1ot have a random distribution on the sphere 
which is even finitely additive. What does de Finetti say about that? 
SAVAGE: I think he would say something like this. Suppose we are 
trying to make a mathematical model of someone's opinions about 
where on the earth a certain meteorite is. The person may be so rash 
as to blurt out that he always regards congruent sets on the surface of 
a sphere as equally probable. But Hausdorff's example shows that the 
person's opinions cannot really have this property. In short, a person 
who had opiniolls about all sets on the sphere would have to assign 
unequal probabilities to some paixs of congrnent sets. 

For my own part, it makes medizzyto talk about all the subsets of a 
sphere; that is an awful lot of sets. From a practical point of view, it 
is enough to know the probabilities of polyhedral sets. Certainly it is 
more than enough to know the probabilities of all Borel sets. While 
agreeing with de Finetti that there is no absolute place to draw 
the line and that no class of sets should be regarded as not having 
probabilities, I would Wlderline that in practical computations the 
probabilities of only a relatively few and sinlple sets are actually 
used. 
Goo o: I think you need to equate probability with exterior measure, 
if you are going to allow non-measurable sets. 
BARNARD: Then you will not have an additive system. 
Goo o: That is all right, for measurable sets it comes to the same thing. 
One is never interested ·in non-measw·able sets in practice. 

Cox: I would like Professor Savage to elaborate on remarks he made 
in his paper about the difficulty of justifying randomization from a 
strict Bayesian point of view. Part of the solution here may lie in 
attaching a particularly high utility to experiments for which many 
people can assign a reasonable prior distribution. If one thinks solely 
of a particular experLment desiring to produce closest possible esti­
mates of a particular difference, then it seems reasonable sometimes 
not to randomize. One may do what Professor Savage said, namely 
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to think up every little bit of information available and put it all 
together, and do what seems most likely to produce a precise estimate. 
But such an experiment may have very little value to anyone else, 
because not being aware of all the particular technical details, it 
would not be at all clear that there is not a tremendous systematic 
error in the experiment. One important property of randomization is 
that it makes the data reasonably convincing to other people as well 
as to oneself. Of course this is only half the story; randomization may 
increase accuracy by removing unsuspected biases. This aspect is 
particularly in1portant in large experiments where bias is more 
important than random error. 

SA v AGE: I think you lay your finger on the objectives of randomiz­
ation, to make the experiment useful to others and to guard against 
one's own subconscious. What remains delicate and tentative for me 
is to understand when, and to what extent, randomization really can 
accomplish these objectives. 

My doubts were first crystallized in the sununer of 1952 by Sir 
Ronald Fisher. 'What would you do,' I had asked, 'if, drawing a 
Latin square at random for an experiment, you happened to draw a 
Knut Vik square?• Sir Ronald said he thought he would draw 
again and that, ideally, a theory explicitly excluding regular squares 
should be developed. As I have learned since, other statisticians have 
had, and worked on, this same idea; see, for example, Jones 
(1958), Yates (1951a, b). This illustrates once more that one need not 
be a Bayesian to arrive at criticisms to which the Bayesian is led 
systematically. 

The possibility of accidentally drawing a Knut Vik square or 
accidentally putting just the junior rabbits into the control group and 
the senior ones into the experimental group iUustrates a flaw in the 
usual reference-set argument that sees randomization as injecting 
'objective', or gambling-device probabilities into the problem of 
inference. If the randomization and the experiment were so executed 
by an automaton that no one knew which Latin square had been 
drawn or which animals had been put in the control group, the argu­
ment would, I suppose, apply. But, in fact, this information is not, 
and ought not to be, kept from the experimenter. And he ought not, 
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in principle, to withhold it from those to whom he communicates his 
results. 

In practice, we may hope, if the experiment is rather large and so 
designed as to control the variables that (subjectively) look most 
important, then randomization will almost always lead to a layout 
that does not look excessively suspicious to any given observer. But 
this hope needs serious investigation. Perhaps randomization is even 
one of the most efficient ways to arrive at such widely acceptable 
layouts. (Suchrwnoms as that artists can make more random-looking 
designs than random number generators can are a little disquieting 
to this suggestion.) 

In any event, randomization does remove an important possibility 
of personal interference, for anyone who believes that the randomiz­
ation did take place according to Hoyle. 

Many statisticians agree that an analysis of an experiment ought 
not be chosen at random. We think it wrong, for example, to break 
ties at random or to try to escape from the Behrens-Fisher problem 
by artificially pairing observations. But it has been puzzling to under­
stand why, if random choices can be advantageous in setting up an 
experiment, they cam1ot also be advantageous in its analysis. The 
discussion Dr Cox and I have been giving of randomization seems to 
lead to an answer to this question. In making an analysis, there is no 
need to resort to chance to find a compromise analysis that will nearly 
suit everybody, for each interested person can in principle make for 
himself the analysis he thinks best. Attempting a compromise can only 
lose some of the relevant knowledge won by the experiment. Nor can 
randomization defend against the dangers of subconscious or con­
scious bias present at the analysis stage. 

The arguments against randomized analysis would not apply if the 
data were too extensive or complex to analyse thoroughly by the 
individuals concerned. In such a case study of the data might itself 
become an empirical study based on sampling. Monte Carlo methods 
might be used. Or one of many possible expensive analyses might be 
determined in part by randomization in the hope of nearly pleasing 
everyone. 

lt seems to me that, whether one is a Bayesian or not, there is still 
a good deal to clarify about randomization. 
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BART LETT: I think this discussion does indicate a certain tendency 
to compromise both from the Bayesian point of view and from the 
frequency point of view. On the one hand those who work in terms of a 
frequency theory avoid certain possible designs because of notions 
and prior probabilities of what they might contain. On the other hand 
the fact that the Bayesian would not adopt a perfectly chosen 
and systematic design, for whatever reasons, seems to represent 
a certain compromise, in the di rection of introducing objective 
probabilities. 

SAVAGE: From my point of view, the exploitation, in personal rela­
tions, of the fact that many people coincide in certain judgements is 
not a compromise. It does of course point up the common sense 
behind the belief that objective probability is a definable notion. 

Gooo: I think the purpose of randomization from the subjectivist 
point of view is to simplify the analysis by throwing away some of the 
evidence, deliberately. 

SAVAGE: That is a terrible crime, to throw away evidence. 

Gooo: But it is evidence which is subjectively judged to be irrelevant. 
rr you had an experiment in which you had to randomize say a 
thousand objects, say cups of tea, you can never be sure that you had 
excluded everything that would not be eventually discovered by some­
one to contain some peculiarities. And your judgement would be the 
judgement to suppress all these details. 

Cox: I think Professor Savage's argument leads to what seems to me 
an acceptable practical conclusion, that randomization is very useful 
in large and moderate-sized experiments, but is not really very much 
good in very small single experiments. 

WINSTEN: It means also that you should publish the actual design 
of the Latin square, or whatever it is you chose, so that people can see 
whether perhaps they have nol got a hypothesis of the other sort that 
they can fill in. 

Mr E. D. VAN REST: I am rather surprised that previous speakers 
have tended to minimize the importance of randomization. Randomiz-
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ation seems to be useful whenever knowledge is absent, and I think 
that is in line with all the previous discussion. Professor Savage dis­
cussed the example of animals, recognized to be in two classes, senior 
and junior. 

Directly you can recognize the different classes, they are not a 
subject for randomization. In other words, we experiment over most 
of those classes of which we have knowledge and randomize where 
we have no knowledge. Fisher and Professor Savage rejected a regular 
arrangement which turned out as the result of randomization. That is 
exactly explainable in the same way; after the randomization has been 
done a classification has been recognized. The oniy reason for throw­
ing it away is that it has not been recognized before starting. You use 
randomization to perform an averaging function, the averaging out of 
errors, and it is therefore just as legitimate in small experiments as in 
large experiments, but it is not so effective. It still needs to be done 
even though it is not so effective. 

BARTLETT: This is the point of view of the non-Bayesian, the usual 
Fisherian approach. Are you suggesting that your comments justify 
randomization from Professor Savage's point of view? 

YAN REST: To me it does not seem to matter which point of view you 
lake. 

SA v AGE: Suppose we had, say, thirty fur-bearing animals of which 
some were junior and some senior, some black and some brown, some 
fat aod some thin, some of one variety and some of another, some 
born wild and some in captivity, some sluggish and some energetic, 
and some long-haired and some short-haired. It might be hard to base 
a convincing assay of a pelt-conditioning vitamin on an experiment 
with these animals, for every subset of :fifteen might well contain 
nearly all of the ani mals from one side or another of one of the 
important dichotomies. The analysis of covariance (or analysis of the 
experiment as an unbalanced incomplete multifactor experiment) 
might give some, but not enough, help. 

Thus contrary to what I think I was taught, and certainly used to 
believe, it does not seem possible to base a meaningfu l experiment 
on a small heterogeneous group. In particular, the availability of 
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technically valid confidence intervals may not really enable us to 
make a convincing measurement. 

BARNARD : I have often said that 1 agree with the Bayesian approach 
in many situations, especially in industrial problems. I would like, 
however, to comment on the type of Bayesian argument that hinges 
on the 'smoothness' of the prior distribution. It seems to me very 
important to recognize just how smooth the distributions sometimes 
have to be for this approach method to give good results. In the 
sampling inspection situation mentioned already, one is tempted to 
assume that the proportion defective has a very smooth prior distri­
bution say of the f3 type. This is all right very often for deciding what 
you are going to do on the basis of a given sample, but very much not 
all right when deciding what size of sample you are going to take or 
what kind of sampling you are going in for. It may, for example, lead 
you to underestimate the tremendous advantage of sequential methods 
as compared with fixed sample size. 

Gooo: I should like to mention a topic rather different from the ones 
we have been discussing previously. What it has in common with 
them is in showing that philosophy does have something to offer to 
practical statistics. 

The question was raised by Popper of how' corroboration' should 
be defined; see, for example, Popper (1959, p. 387). He proposed 
various desiderata for it, and suggested a formula, with theremark 
that better formulae may be found. It is a question of assigning a 
meaning to C(H:EI G), meaning and pronounced ' the corroboration 
of H provided by E, given G '.I think Popper missed out a desideratum 
which narrows down the field of possible interpretations considerably. 
It is this: 

If evidence is considered in two parts, E and F, then the corrobora­
tion of His analytically determined by that provided by E, combined 
with that provided by F when E is known. 

From this axiom, combin.ed with other mild ones, it follows that 
C(H:EIG)must beafunction/{P(HIEG)-P(HIG)}, where/( . ) is a 
differentiable function.* 

Two of the interpretations of C(H:E jG) are then I(H:EjG), the 

*The detailed analysis has since been published (Good, 1960). 
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(' lUlexpectated ') amount of information concerning H, provided by 
E, given G, and W(H:EjG), the weight of evidence concerning H 
provided by E, given G. Symbolically, 

I (H:E jG) = Iog {P(E IH. G)/P(E jG)}, 

W(H: E IG) = log {P(E jH. G)/P(EIB. G)} 
= I(H:EIG)-I(H:EIG) 

= log {O(H IE.G)/O(HIG)}, 

where 0 stands for' odds', p/( I - p), where pis a probability, and the 
bar stands for negation. 

If corroboration has to be a fllllction of P(E jH. G) and P(EI fl. G) 
alone, then it can be proved to be an increasing function of the weight 
of evidence. 

A reasonable aim in the design of an experiment would be the 
maximization of the expected corroboration, for a given cost in 
experimentation, where the corroboration is one of the additive 
kinds, such as information or weight of evidence. Which of these two 
is more sensible will presumably depend on the narrowness of the 
intervals within which we can judge the probabilities P(EIH. G). 
Lindley (1956) considered the use of expected amounts of informa­
tion in the design of experiments; in my book (mentioned above) I 
implicitly took it for granted that expected weight of evidence was 
relevant. 

In order that these remarks should not be misleading, I should add 
that I still consider, with Savage, that the basic principle of rational 
behaviour is the maximization of expected utility. I have not changed 
my opinion about this since reading a chapter by F . P. R amsey over 
twenty years ago. But -in applications the emphasis is often on the 
judgements that can be made with the greatest precision: sometimes 
this will be the probabilities, and sometimes the utilities, and some­
times a mixture. 

Dr G. M. J ENKINS:* It is surprising that one of the features which 
has been accepted without much discussion or disagreement in this 
symposium is the role played by the likelihood function in statistical 

* Dr Jenkins was on leave ofabsence at the time of the meeting and sub­
sequently sent in the following contribution. 

----
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theory in so far as it describes the properties of the sample. It is worth 
noting that some more discussion is required about the choice of the 
likelihood function as a starting point in any theory of inference. 

Main interest has centred arow1d the role played by Bayes's 
Theorem. Professors Bartlett and Pearson have indicated that they 
would not use Bayes's Theorem because either they do not recognize 
its validity or usefulness, or else, even if they were prepared to grant 
it recognition, choose not to use it. Professors Barnard and Savage 
and Mr Lindley accept the use and usefulness ofBayes's Theorem, but 
differ in the extent to which they would apply it. Thus Professor 
Barnard is prepared to use Baycs's Theorem if the prior distribution is 
capable of objective description in the sense that past reco.rds are 
available from which some quantitative evaluation may be made, 
whereas Professor Savage and Mr Lindley are prepared to use it when 
the prior probabilities involved are far more vague in origin. 

I think that ignoring Bayes's Theorem has put much of modern 
statistics out of gear with scientific thinking; that one indeed very 
rarely collects observations without some prior probabilities or prior 
information. In this context, it is necessary to distinguish carefully 
between prior information in the form of approximate statements 
such as 'the distribution is normal with given variance', or 'the 
regression is linear', from prior distributions which are statements 
about the relative frequencies of a give11 parameter or set of para­
meters derived from previous experience or intuition. Prior informa­
tion in the way of an assumption about the model and about the 
distribution or joint distributions of the errors is of course essential 
to the writing down of the likelihood function in the first place. 
Alternatively we may write down likelihood functions which are 
sufficiently robust with respect to the sort of inference that we are 
interested in making. 

The distinction between the sort of information which should be 
fed into Bayes's Theorem which marks the difference of approach 
between Professor Barnard on the one hand and Professor Savage 
and Mr Lindley on the other is best illustrated by means of an example. 
In the design of sampling inspection schemes, it is now being accepted 
that those based on the use of prior distributions (usually referred to 
as process curves) are likely to lead to better results than the purely 

-
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subjective judgements which had been considered previously. On the 
other hand there are situations, e.g. when an inspection scheme is 
being designed for a new product, in which there is no process curve 
available apart from the few results which are inevitably collected 
during the process of research and development. In these situations, 
it would be foolish to ignore the engineering experience of those who 
developed the product and reasonable guesses about the possible 
quality of the product may be used in the design of initial schemes 
which can then be modified in the light off urther evidence about the 
process curve. 

What is probably required is a new word to distinguish between 
prior probabilities of an objective nature and those of a more sub­
jective or personal nature. To the latter might be ascribed the word 
'hnnches ', although this is certain to meet with objections from some 
quarters. What is clear and obvious, however, is the fact that if the 
information which is fed into Bayes's Theorem is vague and possibly 
very imprecise, then the corresponding posterior probabilities or 
expected losses will reflect this imprecision. 

Discussion has also been coniined entirely to what may be described 
as static theories of inference. All these theories are concerned with 
statements about sets of statistical parameters which are assumed to 
be constants of the problem. The notion that one is sampling from 
finite or infinite populations specified by these' .fixed' parameters is 
one which has proved useful in the development of statistical theory 
up to the present. Reflection will perhaps serve to indicate that this is 
a restrictive assumption and one which may eventually prove to be of 
limited usefulness in the handling of experimental data. 

It is worth noting that Fisher appears at no time to have attached 
great importance to this concept. Thus in the use of maximum likeli­
hood, fiducial inference and more explicitly in the use of conditional 
inference, Fisher has always thought in terms of the possible values 
of the parameters which 'flow' from the estimate obtained from the 
sample. Thus in conditional inference, statements are made using 
reference sets generated from within the sample which refer only to 
parameters which are of direct interest in the hypothesis being 
examined. Thus in applying the conditional argument to the problem 
of testing for randomness in binary sequences (and more generally 
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about various hypotheses concerning Markov chains), the inference 
about independence is made conditional on the number of 1 's or O's 
in the observed sequence. As pointed out by Cox (1958b), the.re are 
two advantages to this sort of approach, viz. relevance and expedi­
ency. Thus, it is restrictive and unnecessary to assume that we are 
sampling from a population for which there is a fixed probability P 
for the occurrence of a 1. All that is required is that the proportion of 
l's is not changing violently over the length of the sample. Further­
more, it is expedient to use the conditional approach in problems of a 
discrete nature such as those raised in inference about Markov chains 
since it leads to the elimination of all the nuisance parameters not rele-
vant to the hypothesis being examined. " 

In conditional inference, it is possible to see the germ of what may 
be described as a dynamic theory of inference. By this is meant that 
the statistical parameters which are effectively regarded a~ constants 
in the classical theory are themselves regarded as being governed by a 
stochastic process (usually of a non-stationary type; if it were station­
ary then of course the problem could be redefined in terms of new 
parameters relating to the behaviour of the stationary process) in the 
dynamic theory. This is clearly more in keeping with the behaviour of 
empirical investigations than the static theory. Thus the inference 
problem is regarded as a game of strategy between the statistician and 
nature in which the quantities that are being estimated are themselves 
changing in an irregular or unpredicatable manner. As further evi­
dence is obtained, new prior probabilities may be fed back into Bayes's 
Theorem and new posterior probabilities calculated only to be revised 
at a future date. ' 

These ideas are implicit in the work of Dr G. E. P. Box and his 
associates at the Statistica.1 Techniques Research Group at Princeton 
in connection with the optimisation of the mode of operation of 
chemical plants by means of the technique known as Evolutionary 
Operation. It would seem that what is now required is a formulation 
of these concepts in terms of a dynamic theory of inference which 
should draw on the existing ideas of the static theories and embody 
them in a framework in which there is a feed back of information via 
Bayes's Theorem, i.e. a framework drawing on the theory of servo­
mechanisms. 

I 

~===-=----------------------------'-
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SAVAGE:* Let me make explicit, and comment on, a number of 
questions that have been brought up during the discussion. 

But what if I don't know my own prior probabilities? 

In spite of the over-formal arguments that we should be able to know 
our own prior probabilities by asking ourselves what bets we would 
and would not make, we often do not really know them at all well. 
We are vague about specific probabilities, as Professor Pearson has 
particularly emphasized, and we may not even think of some impor­
tant relevant hypotheses let alone assign probabilities to them, as 
Professor Barnard has emphasized. These imperfections in the theory 
of personal probability are real and render its conclusions imperfect. 
We must, therefore, use the theory circumspectly, checking it fre­
quently with common sense. We must also be prepared to :find that 
when the sample is, so to speak, too small, an experiment leaves us in a 
quandary. Not knowing what to conclude is a reality not to be 
escaped by adopting any so-called 'exact' theory or rule. 

Is Bayesian statistics appropriate to some problems but inappropriate 
to others? 

I have yet to see any statistical procedure that makes a durable appeal 
and cannot be better understood in terms of personal probabilities 
than in terms of their denial and, therewith, denial of the applicability 
of Bayes's theorem. Please understand; I am not saying that we 
Bayesians have the last word in statistical theory which surely would 
prove false, but rather that a dualistic view of statistics does not seem 
called for at the present time, and the Bayesian view does seem to 
have a good deal to offer for the present. 

I no longer believe that there exists some alternative to tlll'n to when 
the subjective method fails to give a satisfactory answer so that there 
are two qualitatively different kinds of statistical situations. I used to 
be cowed by critics who said, with ap parent technical j us ti ficati on, that 
certain popular nonparametric techniques apply in situations where it 
seems meaningless even to talk of a likelihood function, but I have 
learned to expect that each of these techniques either has a Bayesian 

• Professor Savage was invited to conclude the discussion. 
0 
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validation or will be found to have only illusory value as a method of 
inference. 

To illustrate the question of an alternative method with the topic of 
interval estimation, the theory of subjective probability often justilies 
a rather sharply determined belief that an unknown parameter lies in 
a given interval, as I explained in the part of my main talk dealing with 
precise estimation. If circumstances are not favourable, as, for in­
stance, when only one or two degrees of freedom are available for 
estimating a variance, the theory of subjective probability will not 
allow us to conclude at all sharply what probability ought to be 
associated with a given interval. To put it differently, a very crude 
measurement does not overwhelm the differences to be ex}3ected 
between personal opinions. Formally, however, the theory of con­
fidence intervals (and the theory of fiducal intervals also) does not 
hesitate to base 95 per cent intervals for a variance on one degree of 
freedom. To be sure, we all know clearly what a 95 per cent interval 
for variance based on one degree of freedom is. It is a mechanical 
process so associating with each sample an interval that, no matter 
what the actual variance is, the probability that the variance will be 
covered by the random interval is 95 per cent. As we all know, this 
does not mean that whenever variance is measured with one degree of 
freedom you wou Id be willing to bet 19 to 1 after seeing the measure­
ment that the particular confidence interval associated with it includes 
the true parameter. Imagine, for example, that two Meccans carefully 
drawn at random differ from each other in height by only 0·01 mm. 
Would you offer 19 to l odds that the standard deviation of the height 
of Meccans is less than 1·13 mm? That is the 95 per cent upper 
confidence limit computed from chi-squared with one degree of 
freedom. No, I think you would not have even enough confidence in 
that limit to offer odds of 1 to 1. The only use I know for a confidence 
interval is to have confidence in it. When such confidence is not 
justifiable, is it not empty to say that the confidence interval procedure 
solves a problem at which the subjective theory throws up its hands? 

What am I supposed to publish? 

Sometimes listeners to an exposition of Bayesian statistics get the 
misimpression that they are being urged to publish their own op in ions 

-=---
~~=-----------~ 
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as their analysis of an empirical study. For example, van Dantzig had 
the impression on reading my Foundation of Statistics (Savage, 1954) 
that I was urging statisticians to write their own opinions into the 
scientific publications of their clients. Because of this misconception, 
van Dantzig (1957) called his review of my book 'Statistical 
priestcraft'. 

Incidentally, I do not ordinarily refer to the relation between the 
statistician and his client in questions of theoretical statistics, for I 
regard the separation between statistician and client as an accidental 
detail of real life that we should try to overcome. If the client had 
sufficient time, energy, and talent he could be his own statistician, 
and it seems to me that the first object for theoretical study is such a 
statistically well endowed investigator. In practice, I conceive that the 
consulting statistician should, to the best of his ability, lend his mind 
to his client, or make himself one with his client. There are of course 
great practical difficulties in bringing about the desired unity and 
understanding, and the importance of discussing such problems is not 
to be overlooked, but I have not been discussing them here. 

Now,. when we Bayesians emphasize that all opinions are but 
opinion, we do not mean that a scientist publishing the results of his 
investigation has said the last word when he tells the world what his 
opinion is. Quite the contrary, the first thing that he ought to tell is 
what he has observed. In principle, he should do this so well that his 
peers will know what happened as well as if they had done the experi­
ment themselves. This is in idealization quite unachievable in practice, 
but approxin1ation to it is the core of a serious research report. Jn 
particular, numerical data should be reported as fully as is practical. 
The most excusable abbreviations are perhaps attempts lo condense 
the data by means of sufficient statistics, but even these are often 
detrimental, because the sufficient statistics are sufficient only for some 
model that is nominaUy accepted, but that might justifiably be re­
jected in view of some details lost in condensing the data to a sufficient 
statistic. 

Not in principle as an essential but as a courtesy and perhaps as a 
practical necessity, the scientist may present an opinion that he hopes 
will be more or less public. His argument would be of the following 
form, though some parts of it might be left tacit: ' I suppose that you 
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all, Jike me, will agree on such and such aspects of our prior opinions 
and on such and such a model of the experiment. According to Bayes's 
theorem, we now all have approximately such and such opinions in 
common until one of us has more data on the basis of which to revise 
opinions.' A simple example occurs implicitly, I think, whenever 
someone reports that he made, say, five measurements on a heretofore 
ill-determined physical constant and gives their mean x and standard 
deviations. No one will have a sharp prior opinion about the constant 
or the precision of the experimental method, so, if the possibility of 
bias in the measurements is neglected, everyone concerned should 
have, and will be content to have, for his posterior distribution nearly 
a I-distribution on four degrees freedom about x and scaled by 's/-../5. 
(Of course, the possibility of bias is actually of great practical import­
ance in such an experiment, and gives the best of them a tentative 
quality not often reflected in textbook discussion.) 

Finally, and quite incidentally, the investigator may choose to tell 
his peers some of the things that he feels in his bones without having 
any public grounds for conviction. This is frequently done, and of 
course serves some practical purposes, but it is an utter misconception 
to imagine that Bayesian statistics attaches central theoretical import­
ance to the experimenter's publication of his personal opinion. 
Rather, we hope he will so publish that each reader can best form his 
own personal opinion. 

How do statistical inferences differ from inferences generally? 

Professor Bartlett has stressed that stalistical inferences are special 
and that mathematical theory can be applied to them in a manner that ' 
is impossible, or at least unusual, outside of statistics. I concw· in this, 
as I have said in my talk, but Professor Bartlett and I may not be in 
perfect agreement as to where this difference resides. 

As nearly as I can make out, the most characteristic thing about 
problems io mathematical statistics is the role in each of some specific 
model, that is, a specific function Pr(x l.'.\). The model reflects what is 
taken to be public agreement about the probability of the datum x 
as a function of the parameter.'.\. This is the structure even of so-called · 
nonparametric problems. 

Though I call such a well-defined public model characteristic, I am 
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not really sme to what extent it is essential to statistical practice and 
to what extent it is induced by habit or convention. For one thing, in 
so far as you accept the likelihood principle you will agree that one 
really needs only the likelihood of x as a function of A, not probability 
of x as a function of.:\. Still more, since usually no one really takes the 
model seriously as anything but a tentative approximation, we may 
some day learn how to express ourselves more accurately and fully. 

The public character of practical models sometimes has to do with 
large numbers and the statistical order that can come out of chaos. But 
symmetryalso can give rise to publicagreement, wirhoutJargenumbers. 

So far as the preceding remarks are concerned, the problem of 
inferring something about th.c bias of a pe1rny from three tosses would 
seem to be a problem in statistical inference. When the ensign of small­
sample statistics flew high, it would hardly have been questioned that 
this problem or the problem of estimating a variance from one or two 
degrees of freedom was a statistical problem. But perhaps today some 
of you will feel with me that problems based on excessively small 
samples, though they must necessarily merge gradually with those 
based on adequate samples, do not quite belong to the main line of 
statistics. At any rate, the problems that I have called precise measure­
ment have an important property that can hardly be overemphasized. 
For such problems lead, in practice, to posterior opinions that are 
nearly the same from person to person. In testing problems, there can 
also be public agreement, but not of quite so subtle a kind as in precise 
estimation; a test may produce overwhelming practical evidence in 
favour of, or against, a hypothesis, but it does not leave everybody 
with nearly the same posterior odds. The precision by means of which 
some experiments induce practical public agreement also often has its 
source in the law of large munbers and the like. Perhaps, in the last 
analysis, there is no other source of such precision, but it seems 
important to mention that, in principle, a s ingle measurement with an 
instrument of known high accw·acy nearly induces the same normal 
posterior distribution for everyone. 

Science or business? 111/erence or decision? 

Some recent discussions of the foundations of statistics have been 
complicated by assertions that some statistical theory may be valid 
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for business but not for science, and often confused with that distinc­
tion there has beeu another to the effect that problems of inference are 
very different from problems of decision. 

It does not seem to me that any evidence has ever been brought 
forward that a statistical theory philosophically sound for practical 
affairs is inappropriate for science or vice versa. Indeed, it seems 
unlikely that such a thing should occur at a philosophic level, for 
many kinds of business considerations can, and properly do, enter 
the loftiest laboratories - how to allocate the time and money of the 
laboratory to various problems, for example. 

The distinction between inference and decision does seem meaning­
ful to a Bayesian. Inference is for us the art of aniving at P\>Sterior 
probabilities; decision is concerned directly with action. But, from the 
Bayesian point of view, the two concepts are not in disharmony with 
one another. Inference is useful in decision, and the posterior prob­
abilities that figure in inference are, like all probabilities, defined in 
principle in terms of potential decisions. 

What kinds of probability are there? 

To me personal, or subjective, probability is the only kind that makes 
reasonably rigorous sense, and it answers all my needs for a prob­
ability concept. So far as this conference is concerned, however, I do 
not urge so extreme a position on anyone else. If I can leave you 
thinking that personal probability is interesting and potentially valu­
able for statistics, my main point will have been made, whether you 
continue to believe that other concepts of probability are valid or not. 

There has been no perceptibledefenceofthesymmetry, or necessary ' 
concept of probability here, and I do not really think that concept is 
tenable. However, as time will show, Sir Harold Jeffreys, a defender 
ofthe necessary concept, has made a great and lasting contribution to 
statistics that has been too little studied. 

For some of you, it seems to By in the face of common sense to deny 
the existence of frequency probability. But right philosophy some­
times is counter to common sense, and de Finetti has carefully worked 
out a subjectivistic analysis of the situation in which we ordinarily 
talk about frequencies, as I have mentioned [on p. 69]. From our point 
of view, the truth behind the frequency concepl of probability is thus 

~~----------~---==-::::::::====-___,,-===----------------....L 
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a phenomenon clearly explicable in terms of subjective probability. 
Similarly, we subjectivists believe that personal probabi lity gives good 
insight into the truth behind the quest for a necessary definition. The 
capacity to understand, and to take advantage of, other attempts to 
formulate a probability concept contributes to the evidence, for me, 
that the subjective theory is on the right track. 
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