Curve Fitting, the Reliability of
Inductive Inference, and the Error-
Statistical Approach
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The main aim of this paper is to revisit the curve fitting problem using the reliability
of inductive inference as a primary criterion for the ‘fittest’ curve. Viewed from this
perspective, it is argued that a crucial concern with the current framework for ad-
dressing the curve fitting problem is, on the one hand, the undue influence of the
mathematical approximation perspective, and on the other, the insufficient attention
paid to the statistical modeling aspects of the problem. Using goodness-of-fit as the
primary criterion for ‘best’, the mathematical approximation perspective undermines
the reliability of inference objective by giving rise to selection rules which pay insuf-
ficient attention to ‘accounting for the regularities in the data’. A more appropriate
framework is offered by the error-statistical approach, where (i) statistical adequacy
provides the criterion for assessing when a curve captures the regularities in the data
adequately, and (ii) the relevant error probabilities can be used to assess the reliability
of inductive inference. Broadly speaking, the fittest curve (statistically adequate) is not
determined by the smallness if its residuals, tempered by simplicity or other pragmatic
criteria, but by the nonsystematic (e.g. white noise) nature of its residuals. The advocated
error-statistical arguments are illustrated by comparing the Kepler and Ptolemaic mod-
els on empirical grounds.

1. Introduction. The curve fitting problem has a long history in both
statistics and philosophy of science, and it’s often viewed as a formal way
to encapsulate the many dimensions and issues associated with inductive
inference, including the underdetermination and the reliability of inference
problems.

In its simplest form the curve fitting problem is how to choose among
the multitude of ways to fit a curve through any scatter plot of data points
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{(x, ),k =1,...,n} in a way that would capture the ‘regularities’ in
the data adequately. Since there is an infinity of possible curves (models)
that can be thought to be ‘consistent with any data’, the crucial problem
is what criteria to use to direct the choice from among the wealth of
possible curves. Establishing high goodness-of-fit between the data and
a curve is obviously far too easy to achieve. The crucial question is: Which
among the variety of rules for winnowing down the selection should be
followed in order to arrive at reliable inductive inferences? Philosophers
have despaired of solving this problem via any purely a priori, logical
means, and appeals to pragmatic criteria, such as simplicity, proved highly
equivocal (Salmon 1967; Glymour 1981; Skyrms 2000).

As philosophers of science increasingly appealed to formal methods
used in scientific practice, a new avenue for addressing this thorny problem
was opened. Given a class of models, one can use a formal model selection
procedure, such as the Akaike Information Criterion (AIC) and related
procedures based on the likelihood function, to select a fittest model by
trading goodness-of-fit against simplicity (see Forster and Sober 1994 and
Kieseppa 1997, inter alia). The appeal of such automatic selection pro-
cedures is enticing because it provides a formal and objective way to
choose among the multitude of possible curves (Rao and Wu 2001). Al-
though it is understandable that such algorithms would galvanize phi-
losophers to see in them the long sought for solution to core problems
of induction, what is really needed is a scrutiny of the epistemic credentials
of these procedures by both statisticians and philosophers.

The main aim of this paper is to revisit the curve fitting problem using
the reliability of inductive inference as a primary criterion for the ‘fittest’
curve. Viewed from this perspective, it is argued that a crucial concern
with the current framework for addressing the curve fitting problem is,
on the one hand, the undue influence of the mathematical approximation
perspective, and on the other, the insufficient attention paid to the sta-
tistical modeling aspects of the problem. Using goodness-of-fit as the
primary guiding criterion, the mathematical approximation perspective
undermines the reliability of inference objective by giving rise to selection
rules which pay insufficient attention to ‘accounting for the regularities
in the data’. It is argued that high goodness-of-fit, however tempered, is
neither necessary nor sufficient for reliable inference. A more appropriate
framework is offered by the error-statistical approach (Mayo 1996), where
(1) statistical adequacy provides the criterion for assessing when a curve
accounts for the regularities in the data adequately, and (ii) the relevant
error probabilities can be used to assess the reliability of inductive
inference.

Broadly speaking, the fittest curve (statistically adequate) is not deter-
mined by the smallness if its residuals, tempered by simplicity or other
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pragmatic criteria, but by the nonsystematic (e.g. white noise) nature of
its residuals. The advocated error-statistical arguments are illustrated by
comparing the Kepler and Ptolemaic models on empirical grounds, show-
ing that the former is statistically adequate but the latter is not. Indeed,
the Ptolemaic model constitutes the quintessential example of ‘best’ in a
mathematical approximation sense, that gives rise to systematic (nonwhite
noise) residuals, and thus, it does not ‘save the phenomena’.

Section 2 brings out the undue influence of the mathematical approx-
imation perspective on the current discussions of the curve fitting problem.
It is argued that this perspective can be both inadequate and misleading
if reliable inductive inference is a primary objective. This is elaborated
upon by comparing Legendre’s (1805) mathematical approximation with
Gauss’s (1809) statistical modeling perspective, bringing out the potential
conflict between ‘best’ in the former (goodness-of-fit), and in the latter
(statistically adequate) perspective. Section 3 summarizes the basic tenets
of the error-statistical approach, viewed as a modern refinement of Gauss’s
pioneering empirical modeling perspective, emphasizing the role of sta-
tistical adequacy as the cornerstone of reliable inductive inference. In
Section 4 this perspective is used to shed light on a number of issues
associated with the curve fitting problem including goodness-of-fit, pre-
dictive accuracy, projectible regularities, simplicity, overfitting and un-
derdetermination. These arguments are illustrated by comparing the Kep-
ler and Ptolemaic models on empirical grounds.

2. Mathematical Approximation vs. Statistical Modeling.

2.1. A Summary of the Curve Fitting Problem. Curve fitting, in its sim-
plest form, assumes that there exists a true relationship between two var-
iables, say

y=nhx, xeR, (1)

and the problem is to find an approximating curve, say g,,(x), that fits

the data {(x;,y,),k = 1,...,n} ‘best’ and ensures predictive accuracy.

The problem, as currently understood, is thought to comprise two stages.
Stage 1. The choice of a family of curves, say

gl @) = 2, a,6,). 2)
where «:= (ay, @, .. .,,), are unknown parameters and {¢,(x),i =
0,1, ...,m} are known functions, for example, ordinary polynomials

do(x) = 1,0,(x) = x,...,9,(x) = x", or even better, orthogonal poly-
nomials (Isaacson and Keller 1994).
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Stage 2. The selection of the ‘best’ fitting curve within (2) using a certain
goodness-of-fit criterion. Least squares (LS), which chooses g,,(x;; a,5)
by minimizing the sum of squares of the errors

(o) = E O = &5 @) 3)

is the preferred method, yielding the LS estimator ;, ; of @ and minimum
€(as).

A crucial problem with the above approximation argument is that good-
ness-of-fit cannot be the sole criterion for ‘best’, because €(a) can be made
arbitrarily small by choosing m large enough, giving rise to overfitting.
Indeed, as the argument goes, one can render the approximation error
zero (€(a,s) = 0) by choosing m = n — 1 (Isaacson and Keller 1994).

Viewing the curve fitting problem in terms of the two stages described
above is largely the result of (inadvertently) imposing a mathematical
approximation perspective on the problem. The choice of a ‘best’ curve
g,.(x;; &) by minimizing €(«) in (3) would often give rise to a statistically
misspecified model, and thus inappropriate as a basis for inductive in-
ference. To shed further light on this issue one needs to compare and
contrast the mathematical approximation and statistical modeling
perspectives.

2.2. Legendre’s Mathematical Approximation Perspective. The problem
of curve fitting as specified by (1)—(3) fits perfectly into Legendre’s (1805)
least square approximation perspective. Developments in mathematical
approximation theory since then ensure that under certain smoothness
conditions on the true function /4(*), the approximating function

2.6 o) = ﬁ a,d,(x), on G,(x) :={x.k=1,...,n} (4)

provides a mathematical solution to the problem in the sense that the error
of approximation, &(x,,m) = h(x,) — g,(x;; @), converges to zero on
G,(x) as m — oo;

limj le(x,,m)]* = 0. (5)

m—w k=1

The convergence in (5), known as convergence in the mean, implies that
for every e > 0 there exists a large enough integer M(e) such that:

i le(x,,m)|* <e, form > M(e). (6)
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One can achieve a stronger form of convergence, known as uniform
convergence, by imposing additional smoothness restrictions on /(x), say,
continuous second derivatives (Isaacson and Keller 1994). This ensures
that for (e, M(e)) as given above

> le(x,m)<e, for m>M@e andall x, € G(x). (7)
k=1

The driving force behind the results (4)—(7) is the maximization of a
goodness-of-fit criterion, or equivalently, the minimization of a norm
whose general form is

1/p

, for any e>0; (8)

L@ = |3 etvmpax

p =2 for (6), and p = o« for (7). These are well-known results in
mathematics.

What is less well known, or appreciated enough, is that there is nothing
in the above approximation results which prevents the residuals &(x,, m)
= —g.(x;a), k=1,...,n, from varying systematically with x, and
m. Indeed, a closer scrutiny of these theorems reveals that the residuals
usually do vary systematically with &, x,, and m. Let us take a closer look
at a typical theorem in this literature.

Theorem 1. Let /(x) be a continuous function on [a, 5] C R; then a
polynomial, g,(x; @) = 3/, a,¢,(x), will provide a best (and unique)
approximation to /(x) on [a, b] if and only if the error of approxi-
mation &(x,m) = h(x) — g,(x; ), takes values max,_,, |e(x,m)|
with alternating changes in sign at least m + 2 times over the interval
[a, b]. (See Isaacson and Keller 1994.)

Two things stand out from this theorem. First, the a priori nature of
the smoothness conditions on A(x) renders them unverifiable. Second, the
if and only if condition almost guarantees that the residuals would usually
contain systematic information; the presence of cycles (m + 2 changes in
sign, m being the degree of the fitted polynomial) in the residuals
{&(x,,m),k = 1, ...,n}, indicates dependence over k (Spanos 1999, 215).
A typical plot of such systematic residuals is given in Figure 3 (in Section
4) exhibiting such cycles. The systematic nature of these residuals is clearly
brought out by comparing Figure 3 to Figure 4, which represents a typical
realization of nonsystematic (normal, white noise) residuals; these intuitive
notions are made precise in Section 3.

To get some idea as to how the mathematical approximation error term
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varies systematically with (x,m), consider the case of the Lagrange inter-
polation polynomial:

m mo(x — x¥

J
g =2y Il |5—]  xelabl ©

i=0  j=0,#i\X; X/
defined on a net of points G,(x) := {x,,k =1,...,n},n>m, and the
interpolation points (x¥, . . ., x*, x) € [a, b] are chosen to be distinct. For

a smooth enough function A(x)—derivatives up to order m + 1 exist—the
error takes the form

e(x,m) = Lnﬂh(é) ! H

xS T Eeletk (0

that is, e(x, m) is an (m + 1) degree polynomial in x over [, b] with roots
(¥, .., xk):

e(x,m) = a(x — xHx — xF)- - (x — x*

=ax""'+b x"+- - +bx+b,. (1)

Such an oscillating curve is also typical for errors arising from least squares
approximations (Dahliquist and Bjorck 1974, 100).

In summary, a mathematical approximation method will yield a ‘best’
curve g,(x;; a;5), but the results in (5)—(7), provide insufficient infor-
mation for assessing either (i) its statistical appropriateness or (ii) the
reliability of any inference based on it; as argued below, the two are
interrelated. Typically, the approximation residuals {&(x,,m) = y, —
g.(x; a.), k =1, ..., n} will vary systematically with x and m as in (11),
rendering any inductive inference based on g, (x,; @) unreliable.

2.3. Mathematical vs. Probabilistic Convergence. A problem with the
current understanding of the curve fitting problem arises when the con-
vergence results in (5)—(7) are (unwittingly) conflated with probabilistic
convergence needed to establish asymptotic properties for &, , such as
consistency. The former are based on m — %, m being the degree of the
approximating polynomial g, (x; ), but the latter are associated with the
sample size n — o,

Conflating these two convergence results is best exemplified by the ar-
gument that in curve fitting one can always choose the degree m of
g,.(x; &) to be one less than the number of observations (m = n — 1),
rendering the approximation error zero. Although such a choice is per-
fectly legitimate from the mathematical approximation perspective, it is
statistically meaningless, because it will yield m + 1 estimated coefficients
a,¢:= (ay, @, ...,a,) which are inconsistent estimators of «a:=
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(@, @y, . . ., a,,); there is one observation for each parameter! This brings
out the highly misleading nature of the argument that one can just fit an
infinite number of curves through the n data points {(x;,),),k =
1, ...,n} that can be ‘equally consistent with the data’. Nothing can be
further from the truth; any curve that passes through all, or even most,
of these points will be estimating nothing statistically meaningful—some
feature of a statistical model, such as a parameter or a moment. It is no
wonder that the curve fitting problem cannot be addressed in such a
mathematical approximation frame-up. In practice, for inductive inference
purposes one needs at least consistent estimators of «, and that requires
m fixed and n to be much larger than m.

Having said that, a consistent estimator for « is necessary but not
sufficient for reliable inductive inference (Cox and Hinkley 1974). In fre-
quentist statistics, one needs error probabilities to assesses the reliability
of inference, and neither (5)—(7), nor just a consistent estimator, would
provide that. What is missing is a certain probabilistic structure stating
the circumstances under which e(x,, m) would not vary systematically with
k, x and m, and giving rise to a sampling distribution for &, ¢; even securing
consistency necessitates that E[x, - &(x,,m)] = 0 as n — o,

2.4. Gauss’s Statistical Modeling Perspective. Gauss’s (1809) path
breaking contribution was to provide such a probabilistic structure by
embedding the mathematical approximation formulation into a statistical
model. He achieved that by transforming the approximation error term

m

eloom) =y~ 2 e,  xeGX, mxl  (12)
i=0
into a generic (free of x, and m) statistical error:

e, m) = 5.~ NIDO,6%), k=12 ....n ..., (13)

where NIID(0, 0%) stands for ‘Normal, Independent and Identically Dis-
tributed with mean 0 and variance ¢®’. The error in (13) is nonsystematic
in a probabilistic sense, and free from its dependence on (x,, m).

Gauss recast the original mathematical approximation into a statistical
modeling problem based on what is nowadays called the Gauss Linear
model:

Y= b))+ e, e NIDO,6%), k=12....n....
i=0

(14)

What makes his contribution all important from today’s vantage point
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is that the statistical model in (14) provides the probabilistic framework
which enables one (i) to assess the validity (statistical adequacy) of the
premises for inductive inference, and (ii) to provide relevant error prob-
abilities for assessing the reliability of inference. Indeed, (i) enables one
to operationalize when a curve g, (x; @) ‘captures the regularities in the
data’ adequately.

Broadly speaking, g, (x; &) is ‘fittest’” when the residuals {g,(x,,m) =
[ — g.(x; @),k = 1, ... ,n are nonsystematic. This way of character-
izing statistical adequacy, however, is ambiguous because (a) there are
numerous ways one can define ‘nonsystematic’ probabilistically, and (b)
securing statistical adequacy by focusing on the error assumptions (e.g.,
g, NIID(0, 0%)), usually provides an incomplete picture of the task (see
Spanos 2000 on ‘veiled” assumptions). This facet of empirical modeling
has, unfortunately, received inadequate attention in the traditional sta-
tistics literature, but it constitutes one of the basic tenets of the error-
statistical approach in the context of which the ambiguities (a)—(b) are
clarified.

3. The Error-Statistical Approach: A Summary. The term ‘Error-Statis-
tical’ was coined by Mayo (1996) to denote a modification and extension
of the framework for frequentist inductive inference, usually associated
with Fisher, Neyman and Pearson. The rationale for coining this new
term was to identify a collection of fundamental ideas and concepts as-
sociated with these frequentist approaches, quite apart from their philo-
sophical differences, revolving around the central axis of being able to
calculate and use error probabilities to assess the reliability of inference.
Since it is precisely this key recognition that will allow me to identify the
criteria that I argue need to be satisfied, I will employ this notion through-
out, understanding that it is the rationale and the difference in emphasis,
and not the methods and procedures themselves, that may differ from the
traditional discussions.

Modifications and extensions identifying the error-statistical approach
are:

i.  Emphasizing the learning from data (about the phenomenon of in-
terest) objective of empirical modeling.

ii.  Paying due attention to the validity of the premises of induction by
securing statistical adequacy, using thorough misspecification testing
and respecification.

iii. Emphasizing the central role of error probabilities in assessing the
reliability of inference, both pre-data as well as post-data.
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iv.  Supplementing the original Neyman-Pearson framework with a
post-data assessment of inference in the form of severity evaluations
(Mayo 1991).

v.  Bridging the gap between theory and data using a sequence of in-
terconnected models, theory (primary), structural (experimental),
statistical (data) built on two different, but related, sources of in-
formation: substantive subject matter and statistical information
(chance regularity patterns; see Spanos 1999).

vi.  Encouraging thorough probing of the different ways an inductive
inference might be in error, by localizing the error probe in the
context of the different models in (v); see Mayo 1996.

3.1. Embedding a Structural Model into a Statistical Model. In the
curve fitting problem, the approximating function g,(x; «) provides an
example of a structural model, y, = g,(x.; &) + e(x,,m), k = 1,2, ...,
whose form is suggested by some substantive subject matter information,
including mathematical approximation theory. In this section, the problem
of embedding a structural model into a statistical model is discussed in
broader generality, in an attempt to shed further light on the problems
and issues raised by the dependence of the error &(x,,m) on x, and m.

In postulating a theory model to explain the behavior of an observable
variable, say y,, one demarcates the segment of reality to be modeled by
selecting the primary influencing factors x,, well aware that there might
be numerous other potentially relevant factors &, (observable and unob-
servable) influencing the behavior of y,. This reasoning is captured by a
generic theory model of the form

yk = h*(xkagk)’ k € N (15)

Indeed, the potential presence of &, explains the invocation of ceteris
paribus clauses. The guiding principle in selecting the variables in x, is to
ensure that they collectively account for the systematic behavior of y, and
the omitted factors &, represent nonessential disturbing influences, which
have only a nonsystematic effect on y,. This line of reasoning transforms
the theory model (15) into a structural (estimable) model of the form

y/c = h(xk; ¢) + e(xlngk)a k € N, (16)

where /() denotes the postulated functional form, ¢ stands for the struc-
tural parameters of interest. The structural error term, defined to represent
all unmodeled influences,

{e(xi, &) = y — h(xy; @), k e NJ 17

is viewed as a function of both x, and £,. For (17) to provide a meaningful
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model for y, the error term needs to be nonsystematic, say a white noise
stochastic process {e(x,,£,),k € N} satisfying the probabilistic assump-
tions:

[i] E(e(xz, %)) =0

fi] Be(x,.£,) = o0° v (k) < R, x R,
[ii] E(e(x;, &) @ e(X0,8) = 0,k = €,k, € e N
[iv] E(e(Xi, &) = h(x,; ¢)) = 0

(18)

[iv] ensures that the generating mechanism (16) is ‘nearly isolated’ (see
Spanos 1995).

The problem with assumptions [i]-[iv] is that they are empirically non-
testable, since their verification would require one to show that they hold
for all possible values of x, and &,. To render them testable, one needs to
embed the structural model (or material experiment) into a statistical
model, a crucial move that usually goes unnoticed. The form and justi-
fication of the embedding itself depends crucially on whether the data
{(»x),k = 1,...,n} are experimental or observational in nature.

3.2. Experimental Data. In the case where one can perform experi-
ments, controls and ‘experimental design’ techniques such as randomi-
zation and blocking can often be used to ‘isolate’ the phenomenon from
the potential effects of &, by ‘neutralizing’ the uncontrolled factors (see
Fisher 1935). The objective is to transform the structural error into a
generic (zero mean) IID error process by applying controls and experi-
mental design techniques:

(X0 ) ||expecimirels. resian) = & < 1ID(0, 02), k=1,...,n. (19

experimental design

This embeds the structural model (16) into a statistical model of the form
Ve = h(x,; 0) + g, g, 1ID(0, 6%), k=12 ...,n (20)

where the statistical error term g, in (20) is qualitatively very different
from the structural error term e(x,, £,) in (16); g, is free of (x,,£,), and
its assumptions are rendered empirically testable. A widely used special

case of (20), where h(x,; 0) = X ,_,B8:¢.(x,), specifies the Gauss Linear
model (see Spanos 1986, Chapter 18).

3.3. Observational Data. When the observed data {z, := (y,,x,),k =
1, ...,n} are the result of an ongoing actual data generating process, the
experimental control and intervention are replaced by judicious condi-
tioning on an appropriate conditioning information set, ©,, to transform
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TABLE 1. THE NORMAL/LINEAR REGRESSION MODEL.

Statistical GM: y,=B,+B'x,*u,1eT

[1] Normality: 01X, =x)N(-,*)

[2] Linearity: Ey, | X, =x,) =B, +BX, linear in x,

[3] Homoskedasticity: Var(y, | X, = x,) = o, free of x,

[4] Independence: {(»,| X, = x,), t € T} is an independent process
[5] t-invariance: 0 := (B,,B,,0%) do not change with ¢

the structural error into a generic martingale difference error:
(u,| D) 1D, ), k=12,...,n (21

Spanos (1999) demonstrates how sequential conditioning provides a gen-
eral way to decompose a stochastic process {Z,,¢ € T} into a systematic
component u, and a martingale difference process u, relative to a condi-
tioning information set ®,. An error martingale difference process {(i, |
D®,),t € T} constitutes a more modern form of a white noise process (see
Spanos 2006a, 2006b for further details). A widely used special case of
(21) is the NormallLinear Regression model, given in Table 1, where the
model assumptions [1]-[5] are specified in terms of the observable process
{|X, =x),teT}, {u|X, =x,),t e T} being the corresponding er-
ror process.

3.4. Statistical Induction and the Validity of Its Premises. A statistical
model, denoted by M,(y) (see Table 1), plays a central role in statistical
induction by providing the premises of statistical induction when viewed
in conjunction with the observed data y,:= (3, s, - - ., ). Statistical
adequacy is tantamount to the claim that data y, constitute a ‘truly typical
realization’ of the stochastic mechanism described by M,(y). In practice,
statistical adequacy is assessed using thorough Misspecification ( M-S)
testing: probing for departures from the probabilistic assumptions com-
prising M,(y) vis-a-vis data y, (Spanos 1999).

An important provision of the error-statistical approach for securing
statistical adequacy is the specification of a statistical model in terms of
a complete set of probabilistic assumptions [1]-[5] (see Table 1) pertaining
to the observable stochastic process {(), | X, = x,),t € T} (Spanos 2000).
This proviso is designed to deal with the ambiguity of defining statistical
adequacy in terms of nonsystematic residuals. For instance, the assump-
tions [1]-[5] define precisely what is meant by ‘nonsystematic’, and also
provide a unequivocal way to secure statistical adequacy by rendering all
model assumptions directly empirically testable. Statistical model speci-
fications in terms of error assumptions are often incomplete, and the
assumptions are not directly verifiable because the error process
{e,,k € T} is unobservable. For instance, the error assumptions
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g, “ NIID(0, 0?) for the Gauss linear model, when recast in terms of the
observable process {y,,k € T}, take a form similar to assumptions [1]-
[5]; but in terms of D(y,; 6) with E(y,) = 2|, B:¢,(x;) (Spanos 2006b).
In addition, this way of specifying statistical models obviates the need to
invoke a priori presuppositions like the “‘uniformity of nature’ (Salmon
1967). Indeed, the invariant features of the phenomenon of interest are
reflected in the t-invariant parameters (see assumption [5]), rendering it
empirically verifiable vis-a-vis data y,.

It is well known in statistics that the reliability of any inference pro-
cedure (estimation, testing and prediction) depends crucially on the va-
lidity of the premises. Taking the latter as given, the optimality of inference
procedures in frequentist statistics is defined in terms of their capacity to
give rise to valid inferences, which is assessed in terms of the associated
error probabilities, that is, how often these procedures lead to erroneous
inferences (Mayo 1996). In frequentist statistics, the unreliability of in-
ference is reflected in the difference between the nominal error probabilities,
derived under the assumption of valid premises, and the actual error
probabilities, derived by taking into consideration the departure(s) from
the model assumptions.

4. The Error-Statistical Approach and Curve Fitting. In the context of the
error-statistical approach the fittest curve g,(x,; &) is the one that, when
embedded in a statistical model, turns out to be statistical adequate: its
probabilistic assumptions (Table 1) are valid for the data in question. The
validity of these assumptions operationalizes when a curve captures the
‘regularities’ in the data and formalizes the intuitive notion of the residuals
containing systematic information.

The reliability of inference in the context of the error-statistical approach
is achievable because (i) the premises of inductive inference are rendered
empirically testable, and (ii) statistically adequate premises ensure that the
nominal error probabilities approximate closely the actual error proba-
bilities (Spanos and McGuirk 2001).

Adopting the statistical adequacy criterion for the choice of the fittest
curve addresses the reliability of inference problem, but also elucidates
several issues associated with the curve fitting problem, including good-
ness-of-fit, predictive accuracy, simplicity, overfitting and underdetermi-
nation. In principle, statistical adequacy provides a much more stringent
criterion for choosing the fittest curve than the traditional tradeoff be-
tween goodness-of-fit and simplicity because it requires one to test thor-
oughly all model assumptions and detect no departures. Securing statis-
tical adequacy is often a daunting task, because probabilistic assumptions
such as the r-invariance of the statistical parameters (see [5] in Table 1)
are particularly difficult to satisfy in practice (Spanos 1999).



1058 ARIS SPANOS

High degree of goodness-of-fit is neither necessary nor sufficient for
statistical adequacy, although some degree of fit is desirable for the pre-
cision (not the reliability) of inference. On the other hand, statistical ad-
equacy is necessary for goodness-of-fit measures, such as the R* and the
estimated log-likelihood function In L(0; y, ), to be statistically meaningful
(Spanos 2000). Viewing predictive accuracy in terms of ‘small’ prediction
error is nothing more than goodness-of-fit projected beyond the obser-
vation period. As such, it suffers from the same weaknesses: prediction
errors, like the residuals, can vary systematically over the prediction
period.

A statistically adequate curve g, (x; &) captures all the systematic (re-
curring) information in the data, and it gives rise to nonsystematic pre-
diction errors. Indeed, such a curve determines what regularities in the
data are projectible (Skyrms 2000), because the model assumptions capture
precisely such recurring regularities from three broad categories: distri-
butional, dependence, and heterogeneity (Spanos 1999). A statistically
adequate model will give rise to systematic prediction errors only when
the invariant structure of the underlying data generating process change
between the observation and prediction periods. In such a case, one can
use this very discrepancy to diagnose changes in the invariance structure.
In contrast, a statistically inadequate curve g, (x; a) is likely to overpredict
or underpredict, rendering it weak on predictive grounds. This is contrary
to the traditional view, which usually invokes simplicity as the way to
ensure predictive accuracy by counterbalancing the danger of overfitting.

What is the role of simplicity in the context of the error-statistical
approach? The approximating function g, (x; «) is chosen to be as elab-
orate as necessary to ensure statistical adequacy, but no more elaborate.
This is in the spirit of Einstein’s 1933 often paraphrased comment that
“it is the grand object of all theory to make these irreducible elements as
simple and as few in number as possible, without having to renounce the
adequate representation of any empirical content whatever” (see Einstein
1954, 272).

A simple but statistically misspecified model is of little value for infer-
ence purposes, because its inadequacy will give rise to unreliable infer-
ences; the nominal and actual error probabilities will differ. A simple
model, however, might be of some value in probing for possible misspe-
cifications and using the results to respecify.

Statistical adequacy provides an effective safeguard against overfitting.
Overfitting, such as the unnecessary inclusion of higher degree polyno-
mials, or additional lags, is likely to give rise to systematic residuals
(Spanos 1986, 479). One can guard against such overfitting by thorough
M-S testing (Mayo and Spanos 2004).

In a related paper, Spanos (2006¢) argues that the AIC-type model



CURVE FITTING 1059

selection procedures constitute a modest variation on the mathematical
approximation frame-up with the norm (goodness-of-fit measure) defined
by

AIC = —2In L(é; Yo) T 2(the number of unknown parameters in 6).
(22)

Despite the fact that the likelihood function presupposes a certain prob-
abilistic structure, the capacity of AIC-type procedures to ensure the re-
liability of inference is severely impaired, because these probabilistic as-
sumptions are taken at face value; their validity is not assessed. Indeed,
assessing the validity of these assumptions to secure statistical adequacy,
would render these model selection procedures redundant; finding a sta-
tistically adequate model determines the fittest curve. Be that as it may,
when these procedures are viewed in the context of the above discusssion,
they raise two distinct concerns: («) they require starting with a family of
models assumed to contain the correct model, without supplying any
criteria for model validation; and (b) even within an assumed family of
models, satisfying AIC-type criteria does not ensure fulfilling requirements
of low error probabilities for any inferences reached.

When the fittest curve is selected on statistical adequacy grounds it
becomes clear that the problem of underdetermination is unlikely to be
as pervasive as often claimed. Indeed, finding a single statistically adequate
model for a particular data is often a daunting task, because probabilistic
assumptions such as the z-invariance of the statistical parameters ([5] in
Table 1), are particularly difficult to satisfy in practice (Spanos 1999).
Empirical equivalence on statistical adequacy grounds is rare but possible,
raising the prospect of comparing such models using additional criteria
including substantive adequacy: the validity of the structural model (con-
founding factors, causal claims, external validity, etc.) vis-a-vis the phe-
nomenon of interest. As argued in Spanos 2006b, statistical adequacy is
necessary, but not sufficient, for ensuring substantive adequacy. To ex-
emplify the above error-statistical assertions, two widely discussed models
of planetary motion, Kepler’s and Ptolemy’s, are compared on empirical
grounds.

4.1. Kepler’s Model of Planetary Motion. Kepler’s model for the ellip-
tical motion of Mars turned out to be a real empirical regularity because
the statistical model, in the context of which the structural model was
embedded, can be shown to be statistically adequate.

Consider Kepler’s first law of motion in the form of the structural model

yt = @ + ozlx, + E(Xk,gk), l e —l]—a (23)
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Figure 1. Elliptical motion of planets.

where y := (1/r), x := cosd, r = the distance of the planet from the sun,
and ¢ = the angle between the line joining the sun and the planet and
the principal axis of the ellipse (see Figure 1).

It is important to emphasize that historically this law was originally
proposed by Kepler as just an empirical regularity that he ‘deduced’ from
Brahe’s data. Newton provided a structural interpretation to Kepler’s first
law using his law of universal gravitation F = [G(m - M)/r*], where F is
the force of attraction between two bodies of mass m (planet) and M
(sun); G is a constant of gravitational attraction (Linton 2004). This law
gave a clear structural interpretation to the parameters: o, = MG/4k>,
where k denotes Kepler’s constant, and «, = [(1/d) — «,], where d is the
shortest distance between the planet and the sun.

Moreover, the error term e(x,, £,) also enjoys a structural interpretation
in the form of ‘deviations’ from the elliptic motion due to potential mea-
surement errors as well as other unmodeled effects. Hence, the white noise
error assumptions [i]-[iv] in (18) will be inappropriate in cases where (i)
the data suffer from ‘systematic’ observation errors; (ii) the third body
problem effect is significant; and (iii) the general relativity terms turn out
to be important.

Embedding (23) into the Normal/Linear Regression model (Table 1),
and estimating it using Kepler’s original data (n = 28) yields

¥, = 0.662062 + 0.061333x, + i,, R* = 0.999, s = 0.0000111479.
(0.000002) (0.000003) (24)

The misspecification tests (Spanos and McGuirk 2001) reported in Table
2 indicate that the estimated model is statistically adequate; the p-values in
square brackets indicate no significant departure from assumptions [1]-[5].

A less formal but more intuitive verification of the statistical adequacy
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TABLE 2. MISSPECIFICATION TESTS FOR KEPLER.

[1] Non-normality: D'AP = 5.816[0.106]

[2] Nonlinearity: F(1,25) = 0.077[0.783]
[3] Heteroskedasticity: F(2,23) = 2.012[0.156]
[4] Autocorrelation: F(2,22) = 2.034[0.155]
[5] Mean heterogeneity: F(1,25) = 1.588[0.219]

of (24) is given by the residual plot in Figure 2, which exhibits no obvious
departures from a typical realization of a normal, white noise process.

4.2. Ptolemy’s Model of Planetary Motion. The prevailing view in phi-
losophy of science is that Ptolemy’s geocentric model, despite being false,
can ‘save the phenomena’ and yield highly accurate predictions. Indeed,
the argument goes, one would be hard pressed to make a case in favor
of Kepler’s model and against the Ptolemaic model solely on empirical
grounds. Hence, one needs to use other internal and external virtues (Lau-
dan 1977). This view is questioned by showing that the Ptolemaic model
does not account for the regularities in the data; it is shown to be statis-
tically inadequate—in contrast to Kepler’s model.

The Ptolemaic model of the motion of an outer planet based on a single
epicycle, with radius « rolling on the circumference of a deferent of radius
A and an equant of distance ¢, can be parameterized in polar coordinates
by the following model:

d? = ay+ a,c0s(p) + a,cos8(8¢g,) + a;cos((6 — 1)g,)
+ a,sin () + assin (3¢,) + u,, (25)

where d, denotes the distance of the planet from the earth, ¢, the angular
distance measured eastward along the celestial equator from the equinox,
and 6 = Ala. Ptolemy’s model does not enjoy a structural interpretation,
but one can interpret the coefficients («,, . . ., as) in terms of the under-
lying geometry of the motion (Linton 2004).

The data used are daily geocentric observations for Mars (from the U.S.
Naval Observatory) of sample size 7' = 687, chosen to ensure a full cycle
for Mars. Estimating (25) by embedding it into the Normal/Linear Re-
gression model (Table 1) yields

d? = 2.77 — 1.524 — cos(¢,) — 1.984 cos (1.3¢,) + 2.284 cos(0.3¢,)

(0.047) (0.053) (0.069) (0.106)
—2.929sin (¢,) — 0.260sin (3¢,) + 4, (26)
(0.087) (0.014)

with R? = 0.992, s = 0.21998, and T = 687. 6 = 1.3 was chosen on
goodness-of-fit grounds; Ptolemy assumed A/a = 1.5.
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Figure 2. Residuals from the Kepler regression.

A cursory look at the standardized residuals (Figure 3) confirms the
excellent goodness-of-fit (R* = 0.992)—none of the residuals lies outside
an interval of 2.5 standard deviations. Despite being relatively small, a
closer look reveals that the residuals exhibit systematic statistical infor-
mation. The cycles exhibited by the residuals plot reflect a departure from
the independence assumption (Spanos 1999, Chapter 5). These patterns
are discernible using analogical reasoning based on comparing Figure 3
with a #-plot of a typical (zero mean) NIID realization given in Figure 4.

Standardized Residual

Residuals Versus the Order of the Data
(response is y)

1 50 100 150 200 250 300 350 400 450 500 550 600 650
Observation Order

Figure 3. r-plot of the residuals from (26).
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A typical realization of a Normal white-noise process
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Figure 4. -plot of a Normal white noise realization.

It is interesting to note that Babb’s (1977) plot of the residuals from the
Ptolemy model for Mars, ordered according to the angle of observation
(0° — 360°), looks very similar to Figure 3.

The various departures from assumptions [1]-[5] are formally exposed
using the misspecification tests shown in Table 3. The tiny p-values in
square brackets indicate strong departures from all the statistical as-
sumptions—the estimated Ptolemy model is seriously statistically
misspecified.

The Ptolemaic model has been widely praised as yielding highly accurate
predictions. To assess that claim, the estimated model in (26) was used
to predict the next 13 observations (688-700). On the basis of Theil’s
coefficient,

13 R 13 13 R -1
U=NEg-3r(S+3) = 003, 27)

where ), is the actual value and p, is the predicted value. Its predictive
accuracy seems excellent: 0 < U< 1, the closer to zero the better—see
Spanos 1986, 405. However, the plot of the actual and fitted values in
Figure 5 reveals a different picture: the predictive accuracy of the Ptol-

TABLE 3. MISSPECIFICATION TESTS FOR PTOLEMY.

[1] Non-normality: D'AP = 39.899[0.00000]

[2] Nonlinearity: F(2,679) = 21.558[0.00000]

[3] Heteroskedasticity: F(3,677) = 77.853[0.00000]

[4] Autocorrelation: F(2,677) = 60993.323[0.00000]

[5] Mean heterogeneity: F(1,678) = 18.923[0.00000]
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Figure 5. Actual vs. predicted data for Ptolemy.

emaic model is problematic since it underpredicts systematically, a symp-
tom of statistical inadequacy.

The discussion in Section 2 explains the above empirical results asso-
ciated with the Ptolemaic model as a classic example of how curve fitting,
as a mathematical approximation method, would usually give rise to sys-
tematic residuals (and prediction errors), irrespective of the goodness-of-
fit. In this case, the use of epicycles is tantamount to approximating a
periodic function /(x) using orthogonal trigonometric polynomials; that
is, g,(x; 0) takes the general form (Isaacson and Keller 1994)

m

1
gnx: 0) = Say + > (@, coskx + b, sin kx),
k=1

for x e [, m2 1. (28)

As first noted by Bohr (1949), every additional epicycle increases m to
m+ 1.

5. Summary and Conclusions. The current perspective dominating dis-
cussions on curve fitting is that of mathematical approximation theory,
which provides an inadequate framework for reliable inductive inference.
In particular, it provides no adequate basis for (i) testable assumptions to
ensure the validity of the premises for inductive inference and (ii) dependably
ascertainable error probabilities to assess the reliability of inference. Both
(i) and (ii) are attainable in the context of the error-statistical approach,
by embedding the approximation problem into a statistical model,
M,(y), whose premises are empirically testable, and selecting the ‘fittest’
curve g,(x; 0) to be one that gives rise to a statistically adequate model—
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its probabilistic assumptions are valid for the data in question—formal-
izing the conditions under which the fitted curve captures the ‘regularities’
in data, y,, adequately. These error-statistical assertions are affirmed by
demonstrating that Kepler’s law of planetary motion gives rise to a sta-
tistically adequate model, but Ptolemy’s epicycles model does not. Indeed,
the latter constitutes an example of a ‘best’ curve, in a mathematical
approximation sense, that does not account for the regularities in the
data; it yields systematic residuals.
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