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Severity Principle

Whether severity is understood quantitatively or qualitatively, in terms of
probability or in terms of non-probabilistic, but still formal, notions, the over-
arching principle of evidence remains. We may refer to it as the severity principle:

Severity Principle: Data x (produced by process G) provide a good indi-
cation or evidence for hypothesis H (just) to the extent that
test T severely passes H with x.

Within this analysis, hypothesis H is regarded (or modeled) as a claim about
some aspect of the process that generated the data, G. According to the sever-
ity principle, when hypothesis H has passed a highly severe test (something
that may require several individual tests taken together), we can regard data
x as supplying good grounds that we have ruled out the ways it can be a mis-
take to regard x as having been generated by the procedure described by H.

DANGEROUS MISUNDERSTANDINGS

Although a full understanding of the severity principle, and of how to cal-
culate severity, demands careful discussion beyond this paper, the central
points I need to make require avoiding some common misunderstandings,
especially in regard to the context where the severity requirement refers to
a probabilistic model.

A Test (in the current account) Does Not Require Starting
With a Hypothesis H

I find it useful to adopt the language of testing because it seems the best
way to highlight the challenge (or agon) that an inference is required to
survive before allowing that there is evidence for it. However, there are
common conceptions philosophers typically hold about tests that I wish
to deny (C. S. Peirce may be the sole exception). In particular, there is no
presumption that the hypothesis is arrived at first (somehow), that is, it
is not assumed that the data x must be “novel” in some sense. Beginning
with data x and appropriately arriving at a hypothesis H (which might be
a model, or other claim), as in cases of estimation or model searching,
may still permit x to be a severe test for H. In fact, I developed the sever-
ity notion precisely to distinguish between legitimate and illegitimate
cases where data x are used both to arrive at and test a hypothesis, that
is, where a hypothesis H is “use-constructed” (see, for example, Mayo,
1991; 1996).
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serves to avoid fallacies and resolve debates in statistics. How to reinterpret
N-P tests so that they supply post-data severity assessments that are sensitive to
the actual outcome (unlike standard type I and type II error probabilities), and
how this avoids recalcitrant problems, is discussed in detail elsewhere (Mayo,
1983, 1985, 1996, 2002b, ¢; Mayo and Spanos, 2000).

My concern in the remainder of this chapter is to reply to variations on
a single type of criticism that has dogged non-Bayesian accounts, both in
philosophy and statistical practice, namely;, that error statistical tests do not give us
what we really want from an account of evidence, because they may regard x as good evidence

for H, even though H is not accorded a high posterior probability, according to one or

another recommended way to obtain the requisite priors. This more gen-
eral criticism can be and has been used as ammunition for a criticism
directed specifically at the severity requirement, namely, that a hypothesis
may have passed a severe test (it may be highly probed) even though it is
not accorded high probability. The challenge revolves around what I have
dubbed the “highly probed versus highly probable debate.”

After clarifying the notion of severity I have in mind, I argue, with
respect to each variant of the criticism, that (1) the probabilistic assignment
commits a fallacy, which may be called the fallacy of instantiating probabilities, and
(2) the error statistical assessment of the data, but not the assessment advo-
cated by the critic, is in sync with the goals of severity, and with our intu-
itions about when data should count as supporting evidence in science.

ACHINSTEIN’S CRITICISM OF THE SEVERITY ACCOUNT
OF EVIDENCE

I will begin with a simple variant on this criticism, as articulated by Peter
Achinstein, and then develop and strengthen his charge in order to respond
to the strongest Bayesian criticism in recent statistical literature.

We can get to the heart of the problem in short order: Achinstein’s crit-
icism assumes that (an appropriately random) sample resulting in 40% A’s
being B’s suffices to pass, with severity, the statistical hypothesis that the
population proportion of A’s that are B’s is .4—but this is false, at least in
his example. Perhaps he is assuming that severity in the error statistical
account is captured by what we termed the “simple comparative likelihood
account,” and admittedly, we said, Popper’s view is open to such a reading.
But this overlooks, and is at odds with, the central tenet of the severity
account: good fits (whether absolute or comparative) alone do not suffice for good tests!
Examining Achinstein’s example and criticism serve to both illustrate the
error statistical approach and set the stage for identifying key flaws in a
whole cluster of Bayesian criticisms that run to this type.
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Binomial Test T,

Let us call the test he describes test T,. A random sample of size n = 100 is
taken, X = (X, ..., X, ), where each X is distributed as a Bernoulli random
variable with unknown mean p, the probability of success, where in this
case “success” means drawing a white ball in a random selection (he
assumes that p is constant and trials are independent). We are to test two
simple or point statistical hypotheses:

H;p=4 vs. H:p=26

Test T, may be described as a “point against point” test, since H and H,
each asserts just one of the possible parameter values. (H, is often called
the “null” hypothesis, though none of my points turn on which one we
regard as the null)) Such point vs. point (or simple against simple) tests are
highly artificial and, strictly speaking, are not proper Neyman-Pearson
tests because the hypotheses do not exhaust the parameter space, which
includes all values from o to 1. However, because this is automatically taken
into account in applying the severity criterion, we can proceed to the prob-
lem that Achinstein claims T, poses for my account.

Basic Concepts: Test Statistics, Significance Levels, Tail Areas

A statistical test is defined in terms of a test statistic or distance measure d(X).
In this example:

d(X) = (X-p)/o,

where X is the sample mean, and the sample standard deviation

= |p(-p)

is about .05.” The outcome is given as X | _= .4.

To get the significance level of the observed difference, we ask: “How
improbable is it to observe an X as far or farther from the value hypothe-
sized in H, if in fact H is true>”

To answer this we must calculate P(X> .4;p = .4) = P(d(X) >0) = s.
Since .5 is not small, this would yield a nonstatistically significant difference,
so the test does not reject H. (Typically, it would be required that the sta-
tistical significance reach values as small as .05, or .01, corresponding to
observing at least 50% or §5% white balls in this test.)
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Note that calculating the significance level requires calculating not just
the probability of the data point (.4) under H,, but also the “tail area™—
that is, the probability of outcomes beyond .4— under H . (It makes little
difference in this test whether we consider > or 2))

The Criticism: First Variant

According to Achinstein, “On [Mayo’s] view, . .. the result . .. (40 of the 100
balls selected are white) is good evidence for the hypothesis” H, (Achinstein,
2001: 134), because he supposes that I would regard H, as surviving a severe
test. But has H passed a severe test with outcome X, = .4? No!

Let us abbreviate the severity with which hypothesis H passes test T, with
outcome X _as:

SEV(H, X, T).

Although we can allow that X, = .4 fits H,, to calculate SEV(H,, X = .4,
T,) requires calculating P(a “worse fit” with H; H is false) -~ .s—and
this is clearly not a high severity value! If one were to take this outcome
as grounds for accepting H, we would erroneously do so 50% of the
time! [Note: Since this is a non-significant result, the severity assessment
happens to equal the observed significance level (or P-value), that is, 5.]
To put this in other words, we may agree that H, would not be rejected
by this outcome—but this is not tantamount to finding evidence for H .
Indeed, taking no evidence against the null as evidence for it is a well-
known fallacy.

To explain why, note that “H is false” is the disjunction of values of p other
than .4. Since the alternative statistical hypothesis in Achinstein’s example, H ,
is in the positive direction, “H,; is false” would generally be regarded as the one-
sided alternative, p > .4. (The same argument can be made out if it is a two-
sided alternative.)) We cannot regard a failure to reject a null, that p = .4, as
grounds for H ; p = .4—that there is 0 discrepancy from .4—because the test
would very probably have failed to reject H,, even if in fact there are discrep-
ancies from 4.

Suppose, for example, that the true proportion, p = .41. Of course we
do not know the true value of p, but we need to consider the properties
of our test under such hypothetical scenarios in order to ascertain what
has and has not passed a test with severity. How severely can we say the
data have ruled out a discrepancy of .01? In other words, What's the
severity of the test that the hypothesis p < .41 may be said to have passed?
We calculate

SEV(p<.41,X, =4, T)=P(X>.4,p=.41)=P(D>-2)-6
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Therefore
(*) P(H is true of b)) = p.

But either H is true of b or not—the probability in (*) is fallacious and
results from an unsound instantiation. It may help to make the point using
confidence intervals,

An Analogous Fallacy with Confidence Intervals

A 95% confidence interval estimation procedure has a probability of covering the
true but unknown value of a parameter equal to .95, in a series of experiments on
the same or different populations. Each bag in the pool of bags is a different pop-
ulation, and a 95% confidence interval estimate may be formed for each; however,
each interval estimate either will or will not be true of that population.
Nevertheless, the foregoing reasoning would countenance the fallacious inference:

1. P (the 95% confidence interval procedure yields an interval esti-
mate that is true) =.95

2. The 95% confidence interval procedure yields an interval estimate:
(3<p<.35), let us suppose.

Therefore,

() P(3<p<s) =95

But either (3 < p < .5) or not!

Students from the Wrong Side of Town

Examples of balls in bags, however dear to philosophers, are rather distant
from the kinds of realistic examples about which one’s intuitions are clear-
est. It will be useful to turn to some more realistic examples on which the
identical criticism has been based, both against frequentist statistics in gen-
eral and my severity account in particular. Once again, the fallacy of instan-
tiating probabilities is committed.

Our student, Isaac, has passed comprehensive tests of mastery of high
school subjects regarded as indicating college readiness. Because such high
scores x could rarely result among high school students who are not sufficiently
prepared to be deemed college-ready, we regarded x as good evidence for
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would be extremely high. Thus it would lead to regarding data as evidence
on the basis of a procedure that very probably would be wrong—low
severity! A severity assessment captures and guides intuitions about
evidence.

What We Really, Really Want Is . . . High Severity!

It is (or should be) well known that error probabilistic concepts, such
as p-values and type I and type II errors, do not supply probabilities to
statistical hypotheses, and that interpreting them as if they did leads to
fallacies, paradoxes, and contradictions. Error probabilities and any
severity assessment that we would base upon them, are—quite deliber-
ately—defined exclusively in terms of the sampling distribution of d(X),
under one or another statistical hypothesis of interest. In contrast,
posterior probabilities of a hypothesis such as H,, conditional on the
observed d(x) require a prior probability assignment to (an exhaustive
set of ) hypotheses. (The capital X indicates the random variable; the
lower case x, the resulting value or outcome.) Nevertheless, critics—
especially from Bayesian quarters—have long insisted that “what we
really want” from tests are posterior probabilities of hypotheses, and
some even argue that testers cannot help but fallaciously interpret p-
values as supplying a posterior to the null. Those criticisms are analo-
gous to those in “Achinstein’s Criticism . . .” (above) and commit
analogous fallacies.

A Common Variant on the Criticisms: P-Values versus
Posterior Probabilities

The most telling criticisms are put in terms of p-values: Critics argue that (a)
certain choices of prior probabilities for the null and alternative hypotheses
show that a small p-value is consistent with a much higher posterior proba-
bility in a null hypothesis, from which they conclude that (b) significance test
reasoning is invalid, or at least is incapable of being used to assess the evidence
against the null hypothesis. The criticism assumes that the Bayesian posterior
gives the correct or even an acceptable measure of the degree of evidence,
reliability, or beliefworthiness properly accorded the null, and thus a conflict
between Bayesian and frequentist assessments shows the latter to be at fault!
Nowhere is this assumption defended—one is to have a gut feeling that the
only way to use data to bear upon the truth of hypotheses is by means of a
posterior probability assignment. If the Bayesian posteriors really did provide
assessments of the reliability or beliefworthiness of hypotheses, that would be
one thing—but they do not.
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