D. G. MAYO AND M. KRUSE

PRINCIPLES OF INFERENCE AND THEIR
CONSEQUENCES

The likelihood principle emphasized in Bayesian statistics implies,
among other things, that the rules governing when data collection
stops are irrelevant to data interpretation. It is entirely appropriate
to collect data until a point has been proved or disproven ... [Edwards
et al., 1963, p. 193].

1 INTRODUCTION

What do data tell us about hypotheses or claims? When do data provide good
evidence for or a good test of a hypothesis? These are key questions for a philo-
sophical account of evidence and inference, and in answering them, philosophers
of science have often appealed to formal accounts of probabilistic and statistical
inference. In so doing, it is obvious that the answer will depend on the princi-
ples of inference embodied in one or another statistical account. If inference is
by way of Bayes’ theorem, then two data sets license different inferences only by
registering differently in the Bayesian algorithm. If inference is by way of error
statistical methods (e.g., Neyman and Pearson methods), as are commonly used in
applications of statistics in science, then two data sets license different inferences
or hypotheses if they register differences in the error probabilistic properties of the
methods.

The principles embodied in Bayesian as opposed to error statistical methods
lead to conflicting appraisals of the evidential import of data, and it is this conflict
that is the pivot point around which the main disputes in the philosophy of statistics
revolve. The differences between the consequences of these conflicting principles,
we propose, are sufficiently serious as to justify supposing that one “cannot be
just a little bit Bayesian™ [Mayo, 1996], at least when it comes to a philosophical
account of inference, but rather must choose between fundamentally incompatible
packages of evidence, inference, and testing. In the remainder of this section we
will sketch the set of issues that seems to us to serve most powerfully to bring out
this incompatibility.

EXAMPLE 1 (ESP Cards). The conflict shows up most clearly with respect to the
features of the data generation process that are regarded as relevant for assessing
evidence. To jump right into the crux of the matter, we can consider a familiar
type of example: To test a subject’s ability, say, to predict draws from a deck of
five ESP cards, he must demonstrate a success rate that would be very improbable
if he were merely guessing. Supposing that after a long series of trials, our subject
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attains a “statistically significant” result, the question arises: Would it be relevant
to your evaluation of the evidence if you learned that he had planned all along to
keep running trials until reaching such an improbable result? Would you find it
relevant to learn that, having failed to score a sufficiently high success rate after 10
trials, he went on to 20 trials, and on and on until finally, say on trial number 1,030,
he attained a result that would apparently occur only 5% of the time by chance?

A plan for when to stop an experiment is called a stopping rule. So our ques-
tion is whether you would find knowledge of the subject’s stopping rule relevant
in assessing the evidence for his ESP ability. If your answer is yes, then you are
in sync with principles from standard error statistics (e.g., significance testing and
confidence interval estimation). Interestingly enough, however, this intuition con-
flicts with the principles of inference espoused by other popular philosophies of
inference, i.e., the Bayesian and Likelihoodist accounts. In particular, it conflicts
with the likelihood principle (LP). According to the LP, the fact that our subject
planned to persist until he got the desired success rate, the fact that he tried and
tried again, can make no difference to the evidential import of the data: the data
should be interpreted in just the same way as if he had decided from the start that
the experiment would consist of exactly 1,030 trials.

This challenge to the widely held supposition that stopping rules alter the import
of data was L. J. Savage’s central message to a forum of statisticians in 1959:

The persistent experimenter can arrive at data that nominally reject
any null hypothesis at any significance level, when the null hypothesis
is in fact true.. ..

These truths are usually misinterpreted to suggest that the data of such
a persistent experimenter are worthless or at least need special inter-
pretation ... The likelihood principle, however, affirms that the ex-
perimenter’s intention to persist does not change the import of his
experience [Savage, 1962, p. 18].

Savage rightly took this conflict as having very serious consequences for the foun-
dations of statistics:

In view of the likelihood principle, all of [the] classical statistical ideas
come under new scrutiny, and must, I believe, be abandoned or seri-
ously modified [Savage, 1962, pp. 17-18].

This conflict corresponds to two contrasting principles on what is required by an
account of inference, “evidential-relationship” (E-R) principles and “testing”.
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2 EVIDENTIAL-RELATIONSHIP VS. (ERROR STATISTICAL) TESTING
ACCOUNTS

In what we are calling E-R accounts, the evidential bearing of data on hypotheses
is determined by a measure of support, probability, confirmation, credibility or the
like to hypotheses given data. Testing approaches, in contrast, do not seek to assign
measures of support or probability to hypotheses, but rather to specify methods by
which data can be used to test hypotheses. Probabilistic considerations arise to
characterize the probativeness, reliability, or severity of given tests, and specific
inferences they license.

The difference between E-R and testing approaches is most dramatically re-
vealed by the fact that two data sets x and y may have exactly the same evidential
relationship to hypothesis H, on a given E-R measure, yet warrant very differ-
ent inferences on testing accounts because x and y arose from tests with different
characteristics. In particular, the two tests may differ in the frequency with which
they would lead to erroneous inferences (e.g., passing a false or failing a true hy-
pothesis). That is, the tests may have different error probabilities. We will refer to
the testing philosophy as the error-statistical approach.

In statistical approaches to evidence, the main E-R measure is given by the
probability conferred on x under the assumption that H is correct, P{x; H), i€.,
the likelihood of H with respect to x.! The LP, informally speaking, asserts that
the evidential import of x on any two hypotheses, H and H', is given by the ratio
of the likelihoods of H and H' with respect to x.

To get a quick handle on the connection between the LP and stopping rules,
suppose x arose from a procedure where it was decided in advance to take just
n observations (i.e., n was predesignated), and y arose from our ESP subject’s
‘try and try again’ procedure, which just happened to stop at trial n (sequential
sampling). If, for every hypothesis H, P(x; H) = P(y; H), then according to the
LP it can make no difference to the inference which procedure was used. So, the
fact that the subject stopped along the way to see if his success rate was sufficiently
far from what is expected under chance makes no difference to “what the data are
saying” about the hypotheses. This sentiment is quite clear in a seminal paper by
Edwards, Lindman and Savage:

In general, suppose that you collect data of any kind whatsoever —
not necessarily Bernoullian, nor identically distributed, nor indepen-
dent of each other ..— stopping only when the data thus far collected
satisfy some criterion of a sort that is sure to be satisfied sooner or
later, then the import of the sequence of n data actually observed will
be exactly the same as it would be had you planned to take exactly n
observations in the first place [Edwards et al., 1963, pp. 238-239].

Note that P(x; H) is not a conditional probability usually written as P(x|H) because that would
involve assigning prior probabilities to /f — something outside the standard error statistical approach.
The way to read P(x; H) is “The probability that X takes value x according to statistical hypothesis
H . Any statistical hypothesis H must assign probabilities to the different experimental outcomes.
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This is called the irrelevance of the stopping rule or the Stopping Rule Principle
(SRP), and is an implication of the LP.2

To the holder of the LP, the intuition is that the stopping rule is irrelevant, and it
is a virtue of the LP that it accords with this intuition. To the error statistician the
situation is exactly the reverse. For her, the stopping rule is relevant because the
persistent experimenter is more likely to find data in favor of H, even if H is false,
than one who fixed the sample size in advance. Peter Armitage, in his comments
to Savage at the 1959 forum, put it thus:

I think it is quite clear that likelihood ratios, and therefore posterior
probabilities, do not depend on a stopping rule. Professor Savage, Dr
Cox and Mr Lindley take this necessarily as a point in favour of the
use of Bayesian methods. My own feeling goes the other way. I feel
that if a man deliberately stopped an investigation when he had de-
parted sufficiently far from his particular hypothesis, then ‘Thou shalt
be misled if thou dost not know that'. If so, prior probability meth-
ods seem to appear in a less attractive light than frequency methods,
where one can take into account the method of sampling [Armitage,
1962, p. 721, (emphasis added).

Itis easy enough to dismiss long-run frequencies as irrelevant to interpreting given
evidence, and thereby deny Armitage’s concern, but we think that would miss
the real epistemological rationale underlying Armitage’s argument.? Granting that
textbooks on “frequency methods” do not adequately supply the rationale, we pro-
pose to remedy this situation. Holders of the error statistical philosophy, as we see
it, insist that data only provide genuine or reliable evidence for H if H survives a
severe test. The severity of the test, as probe of H — e.g., the hypothesis that our
ESP subject does better than chance — depends upon the test’s ability to find that
H is false when it is (i.e., when null hypothesis Hy is true). H is not being put to
a stringent test when a researcher allows trying and trying again until the data are
far enough from Hy to reject it in favor of H. This conception of tests provides
the link between a test’s error probabilities and what is required for a warranted in-
ference based on the test. It lets us understand Armitage as saying that one would
be misled if one could not take into account that two plans for generating data
correspond to tests with different abilities to uncover errors of concern.

In the 40 years since this forum, the conflict between Bayesian and “classical”
or error statistics has remained, and the problems it poses for evidence and infer-
ence are unresolved. Indeed, in the past decade, as Bayesian statistics has grown in
acceptance among philosophers, the crux of this debate seems to have been largely
forgotten. We think it needs to be revived.

>There are certain exceptions (the stopping rule may be “informative™), but Bayesians do not regard
the examples we consider as falling under this qualification. See section 6.1.
3This dismissal is the basis of Howson and Urbach’s response to Gillies’ [1990] criticism of them.
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3 THE LIKELIHOOD PRINCIPLE (LP)

The LP is typically stated with reference to two experiments considering the same
set of statistical hypotheses H; about a particular parameter, f, such as the proba-
bility of success (on a Bernoulli trial) or the mean value of some characteristic.

According to Bayes® theorem, P(x; ) ... constitutes the entire evi-
dence of the experiment, that is, it tells all that the experiment has to
tell. More fully and more precisely, if y is the datum of some other ex-
periment, and if it happens that P(x; u) and P(y; ) are proportional
functions of g (that is, constant multiples of each other), then each
of the two data x and y have exactly the same thing to say about the
values of 4i...1, and others, call this important principle the likelihood
principle. The function P(x; ;1) — rather this function together with
all others that result from it by multiplication by a positive constant
—is called the likelihood [Savage, 1962, p. 17]. (We substitute his
Pr(z|\) with P(x; p).)

The likelihood function gives the probability (or density) of a given observed value
of the sample under the different values of the unknown parameter(s) such as p.
More explicitly, writing the n-fold sample (X1, Xz, ..., X») as X, the likelihood
function is defined as the probability (or density) of {x = (z1,%2,... ,Tn)} —
arising from the joint distribution of the random variables making up the sample
X — under the different values of the parameter(s) j.

Even granting that two experiments may have different error probabilities over
a series of applications, for a holder of the LP, once the data are in hand, only the
actual likelihoods matter:

The Likelihood Principle. In making inferences or decisions about
1 after x is observed, all relevant experimental information is con-
tained in the likelihood function for the observed x. Furthermore, two
likelihood functions contain the same information about p if they are
proportional to each other (as functions of 1) [Berger, 1985, p. 28].

That is, the LP asserts that:

If two data sets x and y have likelihood functions which are (a) func-
tions of the same parameter(s) o and (b) proportional to each other,
then x and y contain the same experimental information about i

4We think this captures the generally agreed upon meaning of the LP although statements may be

found that seem stronger. For example, Pratt, Raiffa, and Schlaifer characterize the LP in the following
way:

If, in a given situation, two random variables are observable, and if the value x of the first

and the value y of the second give rise to the same likelihood function, then observing the

value x of the first and observing the value y of the second are equivalent in the sense that

they should give the same inference, analysis, conclusion, decision, action, or anything

else ([Pratt et al., 1995, p. 542]; emphasis added).
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4 STATISTICAL SIGNIFICANCE LEVELS: TESTING PARAMETERS OF
BERNOULLI TRIALS

The error statistical approach is not consistent with the LP because the error sta-
tistical calculations upon which its inferences are based depend on more than the
likelihood function. This can be seen by considering Neyman—Pearson statistical
significance testing.

Significance testing requires identifying a statistical hypothesis Hy that will
constitute the test or null hypothesis and an alternative set of hypotheses reflect-
ing the discrepancy from Hy being probed. A canonical example is where X :=
(X1, Xa,...,X,) is arandom sample from the Bernoulli distribution with param-
eter i, the probability of success at each trial. In a familiar “coin tossing” situation,
we test Hy : p = 0.5, (the coin is “fair”) against the claim that J : p > 0.5.

Once a null hypothesis is selected, we define a test statistic, i.e., a characteristic
of the sample X = (X;, Xs,...,X,) that we are interested in such as X, the
proportion of successes in n Bernoulli trials. Then, we define a measure of fit or
distance between the test statistic, and the value of the test statistic expected under
Hj (in the direction of some alternative hypothesis J). For example, in testing
hypothesis Hy : p = 0.5, a sensible distance measure d(X; Hy) is the (positive)
difference between X and the expected proportion of successes under Hp, 0.5, in
standard deviation units:

d(X; Ho) = &;0—5)

Our distance measure may also be set out in terms of the likelihoods of Hy as
against different alternatives in J. A result x is further from Hy to the extent that
Hy is less likely than members of .J, given x. This distance measure, which we
may write as d' (X, H) gives us a likelihood ratio (LR). That is:

' P(-T; HU)
d (X,Hy) =LR = Pz J)
In the case of composite hypotheses we take the maximum value of the likelihood.?
No matter which distance measure is used, the key feature of the test is based
on considering not just the one value of d that happened to occur, but all of the
possible values. That is, d is itself a statistic that can take on different values in
repeated trials of the experimental procedure generating the data. This probability
distribution is called the sampling distribution of the distance statistic, and is what
allows calculating error probabilities, one of which is the statistical significance
level (SL):

50Otherwise, one would need to have prior probability assignments for each hypothesis within the
composite alternative. Some strict likelihoodists, who do not use prior probabilities, regard this likeli-
hood as undefined (e.g., [Edwards, 1992; Royall, 1997]).
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Statistical Significance Level of the observed difference d(x) (in test-
ing Hp) = the probability of a difference as large as or larger than
d(x), under Hp.

In calculating the statistical significance level, one sums up the probabilities of
outcomes as far as or further from Hy as x is. The smaller the significance level,
the further x is from what is expected under Hy: if it is very small, say,0.05 or
0.01, then the outcome is said to be statistically significant at these levels.

To highlight how an analysis by way of significance levels violates the LP, the
most common example alludes to two different ways one could generate a series
of n independent (Bernoulli) coin-tossing trials, with p the probability of “heads”
on each trial.

EXAMPLE 2 (Case 1: The Binomial Distribution). In the first case, it is decided
in advance to carry out n flips, stop, and record the number of successes, which
we can represent as random variable Z. Here, Z is a Binomial variable with pa-
rameters  and n and the probability distribution of Z takes the form:

(1) P(Z=zp)= ( " )“2(1 _ s

Suppose it is decided to observe n = 12 trials and the observed result is Z=9
heads. The probability of this result, under the assumption that p = pg is:

12 ;
Pi(Z =9;Ho: p=po) = ( 9 )ug(l—m)"

EXAMPLE 2 (Case 2: The Negative Binomial Distribution — A Case of Sequen-
tial Sampling). In case 2, by contrast, we are to consider that the experimenter was
interested in the number of heads observed, Z, before obtaining r tails, for some
fixed value 7. In this sampling scheme the random variable Z follows the Negative
Binomial distribution:

() PAZ=zp) = ( Z+Z_1 )#Z(l—u)‘"-

This experiment can be viewed as conducting Bernoulli trials with the following
stopping rule: Stop as soon as you get a total of r tails. We are next to imagine that
 had been set in advance to 3, and it happens that 9 heads were observed before
the third tail, thereby allowing the trials to terminate. We then have:

P (Z=9,r=3;Ho:p=po)= ( 191 ) (10)° (1 — o).

In each of the two cases above, the data set consists of 9 heads and 3 tails. We
see immediately that (1) and (2) differ only by a constant. So, a set of z heads and
r tails in n=z+r Bernoulli trials defines the same likelihood whether by Binomial
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sampling (n fixed) or Negative Binomial sampling (r fixed). In both cases, the
likelihood of p given z = p?(1 — )™ *. According to the LP, then, this difference
between the two cases makes no difference to what the outcomes tell us about the
various values of u:

If a Bernoulli process results in z successes in n trials, it has the like-
lihood function p*(1 — p)™ * and as far as inferences about p are
concerned, it is irrelevant whether either n or r was predetermined
([Pratt et al., 1995, p. 542]. We replace their p with p for consistency
of notation).

Nevertheless, as the holder of the LP goes on to show, the significance level at-
tained in case 1 differs from that of case 2, thereby showing that significance levels
violate the LP. In particular, we have

(i) The statistical significance level for the Binomial (n fixed at 12)=
P (Z>9;Hy:p=05)=P(z=9o0r100r 11 or 12; u = 0.5) =~ 0.075
whereas

(ii) The significance level for the Negative Binomial (r fixed at 3)=

Py(z=9or10o0r ....;u=0.5) ~ 0.0325.

Thus, if the level of significance before rejecting Hy were fixed at 0.05, we
would reject Hy if the observations were the result of Binomial trials, but we would
not reject it if those same observations were the result of Negative Binomial trials.

5 THE OPTIONAL STOPPING EFFECT

Although the contrasting analysis demanded by the error statistician in considering
the Binomial vs. the Negative Binomial (Example 2) was not very pronounced,
the example we used at the opening of our paper points to much more extreme
contrasts.

An example that has received considerable attention is of the type raised by Ar-
mitage at the “1959 Savage Forum.” The null hypothesis Hy is an assertion about
a population parameter p, the mean value of some quantity, say, a measure of the
effectiveness of some medical treatment. The experiment involves taking a ran-
dom sample of size n, X1, ... X, and calculating its mean. Let X, be the sample
mean of the n observations of the X;s, where we know that each X; is distributed
Normally with unknown mean u and known variance 1, i.e., X; ~ Normal(y, 1).
The null hypothesis asserts the treatment has no effect:

Hy:p=0.
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The alternative hypothesis H; is the complex hypothesis consisting of all values
of x other than 0:

Hy:p#0.
As before, we are to consider two different stopping rules:

EXAMPLE 3 (Case 1: Test T-1 (fixed sample size)). In this case we take n sam-
ples, evaluate the distance between the observed mean, Z,, and the mean hypoth-
esized in Hy, namely 0, and then calculate the SL of this difference. For example,
if Z,, is 2 standard deviation units from O, then the SL is approximately 0.05, re-
gardless of the true value of the mean.% This is the nominal (or computed) SL.

A familiar test rule is to reject Hy whenever the SL reaches some level, say
0.05. This test rule can be described as follows:

Test T-1: Reject Hg at SL = 0.05 iff | X,| > 2/v/n.
The standard deviation of X,, in this example is 1//n. We have
P(Test T-1 rejects Ho; Hp) = 0.05.

Since rejecting Ho when Hj is true is called the fype I error of the test, we can
also say
P(Test T-1 commits a type I error) = 0.05.

EXAMPLE 3 (Case 2: Test T-2 (Sequential testing)). In the second case sample
size n is not fixed in advance. The stopping rule is:

(T-2) Keep sampling until X,, is 2 standard deviations away from 0 (the hypothe-
sized value of p in Hp) in either direction.

So we have
(T-2) Keep sampling until |X,| > 2/y/n.

The difference between the two cases is that in T-2 the tests are applied sequen-
tially. If we have not reached a 2 standard deviation difference after, say, the first
10 trials, we are to go on to take another 10 trials, and so on, as in the “try and try
again” procedure of Example 1. The more generalized stopping rule T-2 for the
Armitage example is:

Keep sampling until | X,| > ka/v/n

where k, is the number of standard deviations away from O that corresponds to
a (nominal) SL of a. The probability that this rule will stop in a finite number
oftrials is one, no matter what the true value of p is; it is what is called a proper
stopping rule.

SThat is because we here have a two-sided test.
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Table 1. The Effect of Repeated Significance Tests (the “Try and Try Again”
Method)

Probability of rejecting H with a result nominally
Number of trials n significant at the 0.05 level at or before n trials,
given Hj is true

1 0.05

2 0.083

10 0.193
20 0.238
30 0.280
40 0.303
50 0.320
60 0.334
80 0.357
100 0.375
200 0.425
500 0.487
750 0.512
1000 0.531
Infinity 1.000

Nominal SL vs. Actual SL

The probability that Test T-2 rejects Hy even though Hy is true — the probability
it commits a type 1 error — changes according to how many sequential tests are
run before we are allowed to stop. Because of this, there is a change in the actual
significance level.

Suppose it takes 1000 trials to reach the 2-standard deviation difference. The
SL for a 2-standard deviation difference, in Case 1, where n was fixed, would be
0.05, the computed or nominal significance level. But the actual probability of
rejecting Hp when it is true increases as n does, and so to calculate the actual SL,
we need to calculate:

P(Test T-2 stops and rejects Hy at or before n=1000; Hy is true).

That is, the actual or overall significance level is the probability of finding a
0.05 nominally statistically significant difference from a fixed null hypothesis at
some stopping point or other up to the point at which one is actually found. In
other words, in sequential testing, the actual significance level accumulates, a fact
reflected in Table 1.

While the nominal SL is 0.05, the actual SL for Case 2 is about 0.53: 53% of
the time Hy would be rejected even though it is true. More generally, applying
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stopping rule T-2 would lead to an actual significance level that would differ from,
and be greater than, « (unless it stopped at the first trial). If allowed to go on long
enough, the probability of such an erroneous rejection is one!’

By contrast, as Berger and Wolpert note:

The SRP would imply, [in the Armitage example], that if the observa-
tion in Case 2 happened to have n = k, then the evidentiary content
of the data would be the same as if the data had arisen from the fixed
[k] sample size experiment in Case 1 [Berger and Wolpert, 1988, p.
76].

So, in particular, if n = 1000, there would be no difference in “the evidentiary
content of the data” from the two experiments.

Now holders of the LP do not deny that the actual significance levels differ
dramatically, nor do error statisticians deny that alternative hypothesis u = T is
more likely than the null hypothesis p = 0. Where the disputants disagree is with
respect to what these facts mean for the evidential import of the data. Specifically,
the error statistician’s concern for the actual and not the nominal significance level
in such cases leads her to infer that the stopping rule matters.

In contrast, the fact that the likelihood ratio is unaffected leads the proponent of
the LP to infer that there is no difference in the evidential import, notwithstanding
the difference in significance levels. Thus, according to the intuitions behind the
LP, it is a virtue of a statistical account that it reflects this.

This irrelevance of stopping rules to statistical inference restores a
simplicity and freedom to experimental design that had been lost by
classical emphasis on significance levels (in the sense of Neyman and
Pearson) ... [Edwards et al., 1963, p. 239].

We can grant some simplicity is lost, but that is because the error probability assur-
ances are lost if one is allowed to change the experiment as one goes along, without
reporting the altered significance level. Repeated tests of significance (or sequen-
tial trials) are permitted — are even desirable — in many situations. However,
the error statistician requires that the interpretation of the resulting data reflect the
fact that the error characteristics of a sequential test are different from those of
a fixed-sample test. In effect, a penalty must be paid for perseverance. Before-
trial planning stipulates how to select a small enough nominal significance level to
compute at each trial so that the actual significance level is still low.®? By contrast,
since data x enter the Bayesian computation by means of the likelihood function,
identical likelihood functions yield identical assignments of posterior probability
or density — so no alteration is required with the two stopping rules, according to
the LP.

TFeller [1940] is the first to show this explicitly.
8Medical trials, especially, are often deliberately designed as sequential. See [Armitage, 1975].
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This leads to the question whether Bayesians are not thereby led into a situation
analogous to the one that error statisticians would face were they to ignore the
stopping rule.

EXAMPLE 3 (continued). Armitage continued his earlier remarks to Savage at
the 1959 forum as follows:

[Savage] remarked that, using conventional significance tests, if you
go on long enough you can be sure of achieving any level of signif-
icance; does not the same sort of result happen with Bayesian meth-
ods? The departure of the mean by two standard errors corresponds
to the ordinary five per cent level. It also corresponds to the null hy-
pothesis being at the five per cent point of the posterior distribution.
Does it not follow that by going on sufficiently long one can be sure
of getting the null value arbitrarily far into the tail of the posterior
distribution? ([Armitage, 1962, p. 72]; (emphasis added).

That is, if we consider in Armitage’s example the “uninformative” prior distri-
bution of p, uniform over (—oo, +00) and given that o2 = 1, then the posterior
distribution for p will be:

Normal (Z,,1/n).

The methods that Bayesians use to draw inferences about y all depend on this
posterior distribution in one way or another.” One common method of Bayesian
inference involves using Z to form an interval of p values with highest posterior
density, the “highest posterior density” (HPD) interval. In this case, the (approxi-
mate) 0.95 HPD interval will be C,,(zZ) = (& — 2/+/n, & + 2/+/n). The Armitage
stopping rule allows us to stop only when | X,,| > 2/+/n, and so that stopping rule
insures that ;1 = 0 is excluded from the HPD, even if u = 0 is true.
As even some advocates of the LP note, this looks very troubling for the Bayesian:

The paradoxical feature of this example is that ...the experimenter
can ensure that C,,(Z) does not contain zero; thus, as a classical con-
fidence procedure, {Cy,(Z)} will have zero coverage probability at
[ = 0] .... It thus seems that the experimenter can, through sneaky
choice of the stopping rule, “fool” the Bayesian into believing that [1]
is not zero [Berger, 1985, p. 507].

That is, (using the non-informative prior density) the use of the stopping rule in
T-2 ensures the Bayesian will accord a high posterior probability to an interval
that excludes the true value of p. Rather than use the HPD intervals, the analogous

9That this uninformative prior results in posteriors that match the values calculated as error prob-
abilities is often touted by Bayesians as a point in their favor. For example, where the most an error
statistician can say is that a confidence interval estimator contains the true value of 95% of the
time, the Bayesian, with his uniform prior, can assign .95 posterior probability to the specific interval
obtained.
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point can be made in reference to Bayesian hypothesis testing.'” Nor can one just
dismiss the issue by noting the obvious fact that the probability for any value of the
continuous parameter is zero. Bayesians supply many procedures for inferences
about continuous parameters, and the issue at hand arises for each of them. One
procedure Bayesians supply is to calculate the posterior probability of a small
interval around the null, (0-g, 0+¢). With € small enough, the likelihood is constant
in a neighborhood of 0, so the posterior probability obtained from the Armitage
stopping rule (T-2) will be very low for (0-¢, O+¢), even if 4 = 0. And since T-2 is
a proper stopping rule, such a low posterior for a true interval around 0 is assured.

In discussions of Armitage’s example, most of the focus has been on ways to
avoid this very extreme consequence—the guarantee (wiih probability 1) of arriving
at an HPD interval that excludes the true value, pp = 0, or a low posterior density
to a true null hypothesis. For example, because the extreme consequence turns on
using the (improper) uniform prior, some Bayesians have taken pains to show that
this may be avoided with countably additive priors (e.g., [Kadane et al., 1999]).!!

Nevertheless, the most important consequence of the Armitage example is not
so much the extreme cases (where one is guaranteed of strong evidence against
the true null) but rather the fact that ignoring stopping rules can lead to a high
probability of error, and that this high error probability is not reflected in the inter-
pretation of data according to the LP. Even allowing that the Bayesians have ways
to avoid the extreme cases, therefore, these gambits fail to show how to adhere to
the LP and avoid a high probabilities of strong evidence against a true null.

To underscore this point, consider a modified version of T-2: the experimenter
will make at most 1000 trials, but will stop before then if X,, falls more than 2
standard deviations from zero. This modified rule (while also proper) does not
assure that when one stops one has | X,,| > 2/1/n. Nevertheless, were our exper-
imenter to stop at the 1000th trial, the error probability is high enough (over 0.5)
to be disturbing for an error statistician. (See Table 1.) So the error statistician
would be troubled by any interpretation of the data that was not altered by dint of
this high error probability (due to the stopping rule). Followers of the LP do not
regard this stopping rule as altering the interpretation of the data — whatever final
form of evidential appraisal or inference they favor. None of the discussions of the
Armitage example address this consequence of the less extreme cases.

0HPDs are not invariant under one-one transformations of the parameter space [Berger, 1985, p.
144]. Some Bayesians find this a compelling reason to avoid HPDs altogether, but this method never-
theless is commonly used.

""One might propose that after the first observation, one could use the result to arrive at a new
countably additive prior. But this altering of the prior so that the so-called “foregone conclusion” is
avoided is not the Armitage example anymore, and so does not cut against that example which concerns
an after-trial analysis of the data once one stops.
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6 REACTIONS TO THE CONSEQUENCES OF THE LP

For the most part, holders of the LP have not shirked from but have applauded
the fact that the inferential consequences of the LP conflict with those of error
statistical principles. Indeed, those who promote Bayesianism over error statistical
approaches often tout the fact that stopping rules (and other aspects of the data
generation procedure) do not alter the Bayesian’s inference.

At the same time, however, many Bayesians and other holders of the LP are
plainly uncomfortable with the fact that the LP can lead to high error probabili-
ties and attempt to deny or mitigate this consequence. We do not think that any
existing attempts succeed. Before explaining why, we should emphasize that the
consequences of the Armitage-style stopping rule example are not the only ways
that adherence to the LP conflicts with the control of error probabilities. Because
of this conflict, many have rejected the LP — including some who at first were
most sympathetic, most notably Allan Birnbaum, who concluded that

It seems that the likelihood concept cannot be construed so as to al-
low useful appraisal, and thereby possible control, of probabilities of
erroneous interpretations [Birnbaum, 1969, p. 128].12

Therefore, in our view, a strategy to block high probabilities of erroneous inter-
pretations as a result of stopping rules will not do unless it can be demonstrated
that:

1. Itis part of a complete account that blocks high probabilities of erroneous in-
ferences (whatever the form of inference or evidential appraisal the account
licenses.)

2. Tt is not merely ad hoc. There must be a general rationale for the strategy
that is also consistent with the LP.

6.1 Can the Stopping Rule Alter the Likelihood Function?

Upon first hearing of the Armitage example, one might assume that the stopping
rule T-2 must make some kind of difference to the likelihood function. This is
especially so for those inclined to dabble informally with likelihoods or Bayes’
Theorem apart from any explicit mathematical definition of the likelihood func-
tion. We know of no formal statistical treatment of the Armitage example that
has seriously claimed that the two stopping rules imply different likelihood func-
tions. (Other types of strategies are proposed, which we will consider.) But these
informal intuitions are important, especially for philosophers seeking an adequate
account of statistical inference.

12Gee Birnbaum [1961; 1962; 19721, Giere [1977], as well as citations in [Barnard and Godambe,
1982] and [Bjornstad, 1992].
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To begin with, it is worth noting that there are other kinds of situations in which
stopping rules will imply different likelihood functions. These are known as infor-
mative stopping rules, an example of which is given by Edwards, Lindman, and
Savage:

A man who wanted to know how frequently lions watered at a certain
pool was chased away by lions before he actually saw any of them
watering there; in trying to conclude how many lions do water there
he should remember why his observation was interrupted when it was
[Edwards et al., 1963, p. 239].

Although a more realistic example might seem more satisfactory, in fact, it is
apparently very difficult to find a realistic stopping rule that is genuinely informa-
tive. (For a discussion, see [Berger and Wolpert, 1988, pp. 88-90].) As Edwards,
et al., then add: “We would not give a facetious example had we been able to think
of a serious one.” In any event, this issue is irrelevant for the Armitage-type exam-
ple because T-2 is not an informative stopping rule. Although the probability of
deciding to take more observations at each stage depends on x, it does not depend
on the parameter y under test."?

Nevertheless, we are willing to address those who assume that an informal or
subjectivist construal of probabilities gives them a legitimate way to alter the like-
lihood based on the stopping rule T-2. But to address them we need more than
their intuitive hunch, they need to tell us in general how we are to calculate the
likelihoods that will be needed, whether the account is purely likelihoodist (e.g.,
Royall [1992; 1997]) or Bayesian. Are we to substitute error probabilities in for
likelihoods? Which ones? And how will this escape the Bayesian incoherence to
which error probabilities such as significance levels are shown to lead?

To see that any such suggested alteration of likelihoods runs afoul of the LP, it
must be remembered that the likelihood is a function of the observed x:

The philosophical incompatibility of the LP and the frequentist view-
point is clear, since the LP deals only with the observed x, while
frequentist analyses involve averages over possible observations. ...
enough direct conflicts have been ... seen to justify viewing the LP
as revolutionary from a frequentist perspective [Berger and Wolpert,
1988, pp. 65-66].

Once the data x are in hand, the holder of the LP insists on the “irrelevance of the
sample space” — the irrelevance of the other outcomes that could have occurred
but did not when drawing inferences from x (e.g., [Royall, 1997]). This is often

13As Berger and Wolpert [1988, p. 90] observe, the mere fact that the likelihood function depends
on N, the number of observations until stopping, does not imply that the stopping rule is informative:
“Very often N will carry information about [the parameter], but to be informative a stopping rule must
carry information about [the parameter] additional to that available in [the sample X], and this last
will be rare in practice” (ibid., 90). For further discussion of informative stopping rules, see [Roberts,
1967].
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expressed by saying the holder of the LP is a conditionalist: for them inferences
are always conditional on the actual value x.

With respect to stopping rules, the conditionalist asks: Why should our inter-
pretation of the data in front of us, x, depend upon what would have happened if
the trials were stopped earlier than they actually were stopped?

Those who do not accept the likelihood principle believe that the prob-
abilities of sequences that might have occurred, but did not, somehow
affect the import of the sequence that did occur [Edwards et al., 1963,
p. 238l

But altering the likelihood because of the stopping rule is to take into account
the stopping plan, e.g., that if he hadn’t gotten a significant result at 10 trials,
he would have continued, and so on, thereby violating the LP. So anyone who
thinks a subjectivist or informal construal of likelihoods gives them a legitimate
way out, must be aware of this conflict with the conditionalist principle. Certainly
this would put them at odds with leading subjective Bayesians who condemn error
statisticians for just such a conflict:

A significance test inference, therefore, depends not only on the out-
come that a trial produced, but also on the outcomes that it could have
produced but did not. And the latter are determined by certain pri-
vate intentions of the experimenter, embodying his stopping rule. It
seems to us that this fact precludes a significance test delivering any
kind of judgment about empirical support ... For scientists would not
normally regard such personal intentions as proper influences on the
support which data give to a hypothesis [Howson and Urbach, 1993,
p. 212].

Thus, the intuition that the stopping rule should somehow alter the likelihood is
at odds with the most well-entrenched subjective Bayesian position and constitutes
a shift toward the error statistical (or “frequentist”) camp and away from the central
philosophy of evidence behind the LP. According to the LP philosophy:

[I]t seems very strange that a frequentist could not analyze a given set
of data, such as (z1,..., ©,) [in Armitage’s example] if the stopping
rule is not given. .. .data should be able to speak for itself [Berger and
Wolpert, 1988, p. 78].

We say the shift is to the error statistical camp because it reflects agreement with
the error statistician’s position that one cannot properly ‘hear’ what the data are
saying without knowing how they were generated — whenever that information
alters the capabilities of the test to probe errors of interest, as in the case of stop-
ping rules. It is precisely in order to have a place to record such information that
Neyman and Pearson were led to go beyond the likelihood ratio (LR):
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If we accept the criterion suggested by the method of likelihood it is
still necessary to determine its sampling distribution in order to con-
trol the error involved in rejecting a true hypothesis, because a knowl-
edge of [the LR] alone is not adequate to insure control of this error
[Pearson and Neyman, 1930, p. 106].

When test T-2 stops, it is true that the LR (in favor of Hy) is small. However, to
the error statistician, we cannot thereby infer we should be justified in rejecting the
hypothesis Hp, because:

In order to fix a limit between ‘small’ and ‘large’ values of [LR] we
must know how often such values appear when we deal with a true
hypothesis. That is to say we must have knowledge of ... the chance
of obtaining [LR as small or smaller than the one observed] in the case
where [Hy] is true (ibid, p. 106).

Accordingly, without the error probability assessment, Pearson and Neyman are
saying we cannot determine if there really is any warranted evidence against Ho.'*
Stopping rules give crucial information for such an error statistical calculation.

It is no surprise, then, that the error statistician regards examples like Armitage’s
as grounds for rejecting the LP. To those who share the error statistical intuitions,
our question is: on what grounds can they then defend the LP?

6.2 Can Stopping Rules Alter the Prior?

In order to avoid assigning the high posterior to a false non-null hypothesis, as
Berger and Wolpert (1988) point out, “the Bayesian might ... assign some positive
prior probability, A, to i being equal to zero™ (p. 81) perhaps to reflect a suspicion
that the agent is using stopping rule T-2 because he thinks the null hypothesis is
true.! Assume, for example, that one assigns a prior probability mass of 0.50 to
the null hypothesis and distributes the rest Normally over the remaining values of

141t should be emphasized that it is not that the N-P inference consists merely of a report of the
significance level (or other error probabilities), at least not if the tests are being used for inference
or evidence. It is rather that determining the warranted inference depends on the actual significance
level and other error probabilities of tests. Granted, the onus is on the error-statistician to defend a
philosophy of inference that uses and depends on controlling error probabilities (though this is not our
concern here). See Note 22.

15 A positive prior probability, A, can be assigned to . = 0 and the rest, 1 — A, distributed over the
remaining values of 4. (This amounts to giving 4 = 0 a non-zero mass, and every other hypothesis
zero mass.) When 1 — X is distributed Normally over the remaining hypotheses with mean 0 and
variance p2, the posterior probability distribution will be:

2 2 =
K 1 1 Kormp,
P(.u:l]i: :—): l+(——1)-—-732“+""3
= s A VI +np?)
where K is the number of standard deviations stipulated in the stopping rule and n is the number of

observations needed to stop [Berger and Wolpert, 1988, p. 811].
See also [Berger and Berry, 19871, [Smith, 1961, p. 36-37].
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w. If it takes n = 1000 trials to stop, the posterior probability assignment to pz = 0
is no longer low, but rather, around 0.37. A virtue of such a prior, as Berger and
Wolpert note, is that it results in an increasing posterior probability assignment to
i = 0 as the number of trials before stopping increases. For example, with this
prior and n = 10, 000, the posterior for the null is about 0.65.

Granted, in a case where one had this prior, the low posterior assignment to
the null hypothesis is avoided, but this does nothing to mitigate the problem as it
arises with the uniform prior — a prior the Bayesian often advocates. Perhaps the
Bayesian would wish to suggest that whenever one is confronted with an experi-
ment with stopping rule T-2, one should reject the uniform prior in favor of one
that appears to avoid the problem. But why should a Bayesian alter the prior upon
learning of the stopping rule?

There is the motivation suggested by Berger and Wolpert [1988], that if you
suspected that the person generating the observations was using stopping-rule T-2
for the purpose of misleading you, you would raise your prior probability assign-
ment to 4 = 0. Does this not violate the LP? Perhaps one could retain the LP on
the grounds that one is only allowing the stopping-rule to affect the prior rather
than the likelihoods (and hence not “what the data say”).'®

Nevertheless, a Bayesian should have serious objections to this response to the
stopping rule problem. Why, after all, should we think that the experimenter is us-
ing T-2 to deceive you? Why not regard his determination to demonstrate evidence
against the null hypothesis as a sign that the null is false? Perhaps he is using T-2
only because he knows that 1 # 0 and he is trying to convince you of the truth!

Surely it would be unfair to suppose that those who, like Savage, touted the
irrelevance of the stopping rule were sanctioning deception when they asserted:
“Many experimenters would like to feel free to collect data until they have either
conclusively proved their point, [or] conclusively disproved it” [Edwards et al.,
1963, p. 239]. Plainly, what they meant to be saying is that there is no reason to
interpret the data differently because they arose from optional stopping. Equating
optional stopping (with rule T-2) with deception runs counter to Savage’s insis-
tence that, because “optional stopping is no sin,” any measure that is altered by the
stopping rule, such as the significance level, is thereby inappropriate for assessing
evidence [Savage, 1964, p. 185]."7

Those who advocate the above move, then, should ask why the sensitivity of
significance levels to stopping rules violates the LP — and thus is a bad thing —
but the same kind of sensitivity of priors is acceptable. The LP, after all, asserts that
all the information contained in the data that is relevant to comparisons between
different parameter values is given in the likelihood function. But what else could

16This ‘solution’ demands that the agent know not only the stopping-rule used, but why the experi-
menter chose that particular stopping-rule, since knowing he wanted to deceive rather than to help you
could make all the difference in the prior you use. Yet Bayesians have delighted in the fact that the LP
renders irrelevant the intentions of experimenters to the import of the experiment.

"There is nothing in the LP to prevent Bayesians from deciding in advance to prohibit certain kinds
of stopping rules, but again, one would like to know why.
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it mean to say that one’s choice of priors depends on the stopping-rule other than
that the stopping-rule contains information relevant to comparisons between values
of u? It is little wonder that many Bayesians have balked at allowing the stopping
rule to alter one’s prior probability: “Why should one’s knowledge, or ignorance,
of a quantity depend on the experiment being used to determine it” [Lindley, 1972,
p. 71]. Why indeed?'®

Finally, even if we put aside the question of stopping rules leading to problem-
atic final posterior probabilities, as long as the Bayesian conceives of likelihood as
determining “what the data have to say”, it is still the case that the data from T-2
are regarded as much stronger support for the non-null than the null, according to
the Bayesian criterion of support.'®

6.3 Does the LP Provide Bounds on Being Misled?

A third kind of response grants that the stopping rule makes no difference at all
to either the likelihood function or the priors, and instead attempts to argue that,
nonetheless, one who holds the LP can avoid having a high probability of being
misled by the data. This argument is sound only for tests that differ in essential
ways from the type leading to the Armitage result. Nevertheless, this response is
important, if only because it is the one first put forward by Savage in responding
to Armitage (Savage 1962).%°

“Let us examine first a simple case” Savage proposes, where we are testing
a simple or point null hypothesis Hog against a point alternative Hy: that is Hy
asserts 1 = fio, and the alternative H asserts 1 = fi1. Call this a point against
point test. In that case, if one is intent on sampling until the likelihood ratio (LR)
in favor of H; exceeds r (for any value of r > 1), it can be shown that if Hp is
true, the probability is only 1/r that one will succeed in stopping the trials. This
response turns on the fact that when we have a (true) simple null Hy against a
simple alternative H, then there is an upper bound to the probability of obtaining
a result that makes H;r times more likely than Ho, namely, 1/r, i.e. P(LR >
r; Ho) < 1/r.

18 indley is referring to Bayesians like Jeffreys [1961] and Rosenkrantz (1977] who determine
‘objective’ or ‘non-subjective’ priors by appealing to formal information-theoretic criteria. They
would, for example, recommend different priors in the Binomial vs. the Negative Binomial case
[Box and Tiao, 1973]. Doing so apparently violates the LP, and has led many Bayesians to be
suspicious of such priors [Hill, 1987; Seidenfeld, 1979], or even to declare that “no theory which
incorporates non-subjective priors can truly be called Bayesian, and no amount of wishful think-
ing can alter this reality” (Dawid, in [Bernardo, 1997, p. 179]). For related discussions con-
trasting subjective and objective priors, see also [Akaike, 1982; Barnett, 1982; Bernardo, 1979;
Bernardo, 1997].

19This point does not rely on the technical Bayesian definition of “support” as an increase in the
posterior, but holds for any conception based on the likelihood, e.g., weight of evidence [Good, 1983].
Bayesians who reject all such notions of Bayesian support need to tell us what notion of support or
evidence they condone.

201 s also the first one mentioned by many defenders of the LP, e.g., [Berger and Wolpert, 1988;
Oakes, 1986; Royall, 1997).
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This impressively small upper bound, however, does nothing to ameliorate the
consequences of the Armitage optional stopping example because that example is
not a case of a point against point test.?!

6.4 Extrapolating From Our Intuitions in Simple Cases

The simple case of testing “point against point” hypotheses has encouraged some
to suppose that the LP offers such protection in all cases — yet it does not. Perhaps
the tendency to turn to the point against point test when confronted with stopping
rule problems explains why the Armitage-type consequence has not received more
attention by Bayesians. But there seems to be a different kind of strategy often at
work in alluding to the point against point test in defending the LP, and we may
regard this as a distinct response to the stopping rule problem.

In appraising the LP, say some, we should trust our intuitions about its plau-
sibility when we focus on certain simple kinds of situations, such as testing point
against point hypotheses, “rather than in extremely complex situations such as [Ar-
mitage’s example]” [Berger and Wolpert, 1988, p. 83]. Since looking at just the
likelihood ratio (and ignoring the stopping rule) seems intuitively plausible in point
against point testing, they urge, it stands to reason that the LP must be adhered to
in the more ‘complex situation’ — even if its consequences in the latter case seem
unpalatable. Regarded as an argument for deflecting the Armitage example it is
clearly unsound. Bracketing a whole class of counterexamples simply on the basis
that they are “extremely complicated” is ad hoc — preventing the LP from being
subject to the relevant kind of test here. Moreover, such sequential tests are hardly
exotic, being standard in medicine and elsewhere.

But perhaps it is only intended as a kind of pragmatic appeal to what is imag-
ined to be the lesser of two evils: their reasoning seems to be that even if the LP
leads to unintuitive consequences in the complex (optional stopping) case, its re-
jection would be so unappealing in the simple cases that it is better to uphold the
LP and instead discount our intuitions in the complex cases. By contrast, some
have gone the route of George Barnard — the statistician credited with first artic-
ulating the LP [Barnard, 1949] — who confessed at the 1959 Savage Forum that
the Armitage-type example led him to conclude that whereas the LP is fine for
the simple cases it must be abandoned in the more complex ones (see [Barnard,
1962]). The LP adherent owes us an argument as to why Barnard’s move should
not be preferred.

21The existence of an upper bound less than 1 can also be shown in more general cases such as when
deling with k simple hypotheses, though as k increases, the upper bound is no longer impressively
small. The general result, stated in [Kerridge, 1963] is that with k + 1 SImplc hypothses where Hg is
true and Hy, ..., Hy are false and Pr(H;) = (k+ 1)~ fori = 0,1,...,k:

kp
“(1-p)

Moreover, such bounds depend on having countably addititve probability, while the uniform prior in
Armitage’s example imposes finite additivity.

P(P(Ho/Xn) <p) <
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7 CONCLUDING REMARKS

Philosophers who appeal to principles and methods from statistical theory in tack-
ling problems in philosophy of science need to recognize the consequences of the
statistical theory they endorse. Nowhere is this more crucial than in the on-going
debate between Bayesian and non-Bayesian approaches to scientific reasoning.
Since Bayesianism — which is committed to the LP — has emerged as the dom-
inant view of scientific inference among philosophers of science, it becomes all
the more important to be aware of the LP’s many implications regarding evidence,
inference and methodology.

Some of the most important of these implications concern the LP’s effect on our
ability to control error and thereby the reliability and severity of our inferences and
tests — generally regarded as important goals of science. A consequence of our
discussion is that there is no obvious way in which approaches consistent with the
LP can deliver these goods. In giving the spotlight to the kind of unreliability that
can result from ignoring stopping rules, our goal is really to highlight some of the
consequences for reliability of accepting the LP, not to argue that examples such
as Armitage’s are common. At the same time, however, it should be realized that
examining the effect of stopping rules is just one of the ways that facts about how
the data are generated can affect error probabilities. Embracing the LP is at odds
with the goal of distinguishing the import of data on grounds of the error statistical
characteristics of the procedure that generated them.

Now Bayesians and likelihoodists may deny that this appeal to error probabili-
ties is what matters in assessing data for inference. They often deny, for example,
that the error statistician’s concern with the behavior of a test in a series of rep-
etitions is relevant for inference.?? Strict adherence to this position would lead
one to expect that they would be unfazed by the Armitage result. In reality, how-
ever, existing Bayesian and Likelihoodist reactions to Armitage-type examples are
strikingly and surprisingly equivocal, and the Bayesian attempts to deflect the Ar-
mitage result have been unclear e.g. see [Johnstone et al., 1986]. Sometimes they
say “It’s not a problem, we do not care about error rates”, while at other times
the claim is “Even though we don’t care about error rates, we can still satisfy one
who does.” The former response is consistent for a holdr of the LP, but it demands
renouncing error probabilities, as we understand that notion. The latter attitude
demands an argument showing how to resolve the apparent tension with the LP.
We have tried to locate the most coherent and consistent arguments, and found that

22The long-standing challenge of how to interpret error statistical tests “evidentially” cannot be
delved into here, but we can see the directions in which such an interpretation (or reinterpretation)
might take us, by extending what we said about why the error statistician regards the stopping rule as
relevant. The error statistician regards data as evidence for a hypothesis H to the extent that / has
passed a reliable or severe test of A, and this requires not just that / fit x but also that test 7 would
very probably not have resulted in so good a fit with H were H false or specifiably in error. See [Mayo,
2000], [Mayo and Spanos, 2000]. By contrast, the Armitage stopping rule makes it maximally probable
that x fits a false H, so H passes a test with minimal severity.
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they failed to live up to this demand. We invite anyone who can further clarify the
Bayesian and Likelihoodist position on the Armitage example to do so.

ACKNOWLEDGEMENTS

We are indebted to Aris Spanos for numerous, highly important statistical insights
regarding the Armitage case. We thank Teddy Seidenfeld, and the participants of
D. Mayo’s 1999 National Endowment for the Humanities Summer Seminar, for
a number of challenging questions, criticisms, and suggestions regarding earlier
drafts. D. Mayo gratefully acknowledges support for this research from the Na-
tional Science Foundation, grant no. SBR-9731505.

Virginia Tech, USA.

BIBLIOGRAPHY

[Akaike, 1982] H. Akaike. On the fallacy of the likelihood principle. Statistics and Probability Letters
1, 75-78, 1982.

[Armitage, 1962] P. Armitage. Contribution to discussion in L. Savage, ed. 1962.

[Armitage, 1975] P. Armitage. Sequential Medical Trials. Oxford: Blackwell, 1975.

[Barnard, 1949] G. A. Barnard. Statistical inference. Journal of the Royal Statistical Society, Series B
(Methodologial), 11, 115-149, 1949.

[Barnard, 1962] G. A. Barnard. Contribution to discussion in L. Savage, ed. 1962.

[Barnard and Godambe, 1982] G. A. Barnard and V. P. Godambe. Memorial article: Allan Birnbaum
1923-1976. The Annals of Statistics 10, 1033-1039, 1982.

[Barnett, 1982] V. Barnett. Comparative Statistical Inference, 2nd edition. John Wiley, New York
1982.

[Berger, 1985] 1. O. Berger. Statistical Decision Theory and Bayesian Analysis. 2nd edition. Springer-
Verlag, New York, 1985.

[Berger and Berry, 19871 J. O. Berger and D. A. Berry. The relevance of stopping rules in statistical
inference. In Statistical Decision Theory and Related Topics IV, vol. 1, S. S. Gupta and J. Berger,
eds. Springer-Verlag, 1987.

[Berger and Wolpert, 1988] J. O. Berger and R. L. Wolpert. The Likelihood Principle, 2nd edition.
Institute of Mathematical Statistics, Hayward, CA, 1988.

[Bernardo, 1979] J. M. Bernardo. Reference posterior distributions for Bayesian inference (with dis-
cussion). Journal of the Royal Statistical Society, series B:41, 113-147, 1979.

[Bernardo, 1997] J. M. Bernardo. Noninformative priors do not exist: A discussion with José M.
Bernardo (with discussion). Journal of Statistical Planning and Inference 65, 159-189, 1997.

[Birnbaum, 1961] A. Bimbaum. On the foundations of statistical inference: binary experiments. An-
nals of Mathematical Statistics 32, 414435, 1961.

[Birnbaum, 1962] A. Bimbaum. On the foundations of statistical inference. Journal of the American
Statistical Association, 57, 269-306, 1962.

[Birnbaum, 1969] A. Birnbaum. Concepts of statistical evidence. In Essays in Honor of Ernest Nagel,
Sidney Morgenbesser, Patrick Suppes and Morton White, eds. St. Martin's Press, 1969.

[Bimbaum, 1972] A. Birnbaum. More on concepts of statistical evidence. Journal of the American
Statistical Association. 67, 858-861, 1972,

[Bjornstad, 1992] J. F. Bjornstad. Birnbaum (1962) on the foundations of statistical inference. In
Breakthroughs in Statistics, vol. 1, 461-477. Samuel Kotz and Norman L. Johnson, eds. Springer-
Verlag, New York, 1992.

[Box and Tiao, 1973] G. Box and G. Tiao. Bayesian Inference in Statistical Analysis. Addison-
Wesley, Reading, MA, 1973.

[Edwards, 1992] A. W. F. Edwards. Likelihood (2nd edition). Cambridge University Press, 1992.




PRINCIPLES OF INFERENCE AND THEIR CONSEQUENCES 403

[Edwards et al., 1963] W. Edwards, H. Lindman and L. J. Savage. Bayesian statistical inference for
psychological research. Psychological Review 70, 450-499, 1963.

[Feller, 19401 W. K. Feller. Statistical aspects of ESP. Journal of Parapsychology 4, 271-298, 1940.

[Giere, 1977] R. N. Giere. Alan Birnbaum’s conception of statistical evidence. Synthese, 36, 5-13,
1977.

[Gillies, 1990] D. A. Gillies. Bayesianism versus falsificationism. Ratio, 3, 82-98, 1990.

[Good, 1983] 1.1. Good. Good Thinking. University of Minnesota Press, Minneapolis, MN, 1983.

[Hill, 1987] B. M. Hill. The validity of the likelihood principle. The American Statistician, 47, 95—
100, 1987.

[Howson and Urbach, 1993] C. Howson and P. Urbach. Scientific Reasoning: The Bayesian Ap-
proach, second edition. Open Court, Chicago, 1993.

Ueffreys, 19611 H. Jeffreys. Theory of Probability, 3rd edition. Clarendon Press, Oxford, 1961.

[Johnstone et al., 1986] D. J. Johnstone, G. A. Barnard and D. V. Lindley. Tests of significance in
theory and practice. The American Statistician, 35, 491-504, 1986.

[Kadane et al., 1999] 1. B. Kadane, M.J. Schervish and T. Seidenfeld. Rethinking the Foundations of
Statistics. Cambridge University Press, Cambridge, 1999.

[Kerridge, 1963] D. Kerridge. Bounds for the frequency of misleading Bayes' inferences. Annals of
Mathematical Statistics 34, 1109-1110, 1963.

[Lindley, 1972] D. V. Lindley. Bayesian Statistics — A Review. J. W. Arrowsmith, Bristol, 1972.

[Mayo, 1996] D. Mayo. Error and the Growth of Experimental Knowledge. University of Chicago
Press, Chicago, 1996.

[Mayo, 2000] D.Mayo. experimental practice and an error statistical account of evidence. Philosophy
of Science, 67, (Proceedings), $193-5207, 2000.

[Mayo and Spanos, 2000] D. Mayo and A. Spanos. A Post-data Interpretation of Neyman-Pearson
Methods Based on a Conception of Severe Testing. Measurements in Physics and Economics Dis-
cussion Paper Series, DP MEAS 8/00. Centre for Philosophy of Natural & Social Science, London
School of Economics, 2000.

[Oakes, 1986] M. Oakes, Statistical Inference, Wiley, 1986.

[Pearson and Neyman, 1930] E. S. Pearson and J. Neyman. On the problem of two samples. Bull.
Acad. Pol. Sei., 73-96, 1930. Reprinted in J. Neyman and E. S. Pearson, Joint Statistical Papers.
pp. 81-106 University of California Press, Berkeley, 1967.

[Pratt e al., 1995] J. W, Pratt, H. Raffia and R. Schlaifer. Introduction to Statistical Decision Theory.
The MIT Press, Cambridge, MA, 1995.

[Roberts, 1967] H. V. Roberts. Informative stopping rules and inferences about population size. Jour-
nal of the American Statistical Association. 62, 763-775, 1967.

[Rosenkrantz, 1977] R. D. Rosenkrantz. Inference, Method, and Decision: Towards a Bayesian Phi-
losophy of Science. Boston: Reidel, 1977.

[Royall, 1992] R. Royall. The elusive concept of statistical evidence (with discussion). In Bayesian
Statistics 4, ].M. Bernardo, J.O. Berger, A.P. Dawid and A.EM. Smith, eds. pp. 405-418. Oxford
University Press, Oxford, 1992.

[Royall, 1997] R. Royall. Statistical Evidence: A Likelihood Paradigm. Chapman & Hall, London,
1997

[Savage, 1962] L. J. Savage. The Foundations of Statistical Inference: A Discussion. Methuen, Lon-
don, 1962.

[Savage, 1964] L.J. Savage. The foundations of statistics reconsidered. In Studies in Subjective Prob-
ability, H. Kyberg and H. Smokler, eds. John Wiley, New York, 1964.

[Seidenfeld, 1979] T. Seidenfeld. Why I am not an objective Bayesian. Theory and Decision 11, 413—
440, 1979.

[Smith, 1961] C. A. B. Smith. Consistency in statistical inference and decision (with discussion).
Journal of the Royal Statistical Society, (B), Vol. 23, No. 1, 1-37, 1961.




