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Abstract:
Economies are so high dimensional and non-constant that many features of models can-
not be derived by prior reasoning, intrinsically involving empirical discovery and requir-
ing theory evaluation. Despite important differences, discovery and evaluation in eco-
nomics are similar to those of science. Fitting a pre-specified equation limits discovery,
but automatic methods can formulate much more general initial models with many pos-
sible variables, long lag lengths and non-linearities, allowing for outliers, data contami-
nation, and parameter shifts; then select congruent parsimonious-encompassing models
even with more candidate variables than observations, while embedding the theory; fi-
nally rigorously evaluate selected models to ascertain their viability.

1. Introduction

In 1660, the Royal Society of London was founded as a ‘Colledge for the Pro-
moting of Physico-Mathematicall Experimentall Learning’, with the intent of
bridging the gap between theory and evidence that had persisted since Plato
versus Aristotle through to Galileo versus Gilbert (for an excellent discussion,
see Goldstein 2010). That gap remains vast to this day in economics, where any
attempt to analyze data outside a pre-specified formal model is dismissed as
‘measurement without theory’, following Koopmans (1947). The most extreme
manifestations come from those who espouse ‘real business cycle’ models, like
Kydland and Prescott (l991), essentially asserting that the only role for evi-
dence is to quantify the so-called ‘deep parameters’ of a mathematical model.
Next most extreme are empirical analyses based on claimed ‘stylized facts’, an
oxymoron in the non-constant world of economic data.

Many features of empirical economic models cannot be derived from theory
alone: no matter how good that theory may be, it is certain to be an incom-
plete representation of even key features of ‘reality’, and will undoubtedly be
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replaced by a better theory in future. Thus, imposing an economic theory on
data will almost inevitably mislead. In practice, one needs institutional and em-
pirical evidence on which variables are actually relevant (namely, the complete
set of substantive determinants), their lagged responses (if time series or panel
data) or dependence (if cross-section or panel data), the functional forms of all
connections (any non-linearities), the simultaneity or exogeneity of the ‘explana-
tory’ variables or ‘instruments’, the formation of expectations (where relevant),
and the data measurement accuracy, inter alia. Most importantly, while some
economic theories have begun to address unit roots, almost none incorporate
the intermittent occurrence of unanticipated structural breaks (the two central
forms of non-stationarities in economies). All these aspects have to be data-
based on the available sample while maintaining theory insights, so econome-
tricians must discover what matters empirically, then stringently evaluate their
findings, hence need methods for doing so.

There are large literatures on the history and philosophy of science exam-
ining the process of discovery, primarily in experimental disciplines, but also
considering observational sciences. Below, we discern seven common attributes
of discovery, namely, the pre-existing framework of ideas, or in economics, the
theoretical context; going outside the existing world view, which is translated
into formulating a general initial model; a search to find the new entity, which
here becomes the efficient selection of a viable representation; criteria by which
to recognize when the search is completed, or here ending with a well specified,
undominated model; quantifying the magnitude of the finding, which is trans-
lated into ‘accurately’ estimating the parameters of the resulting model; eval-
uating the discovery to check its ‘reality’, which becomes testing new aspects
of the findings, and perhaps evaluating the selection process itself; and finally,
summarizing all the available information, so here we seek parsimonious mod-
els. Section 2 discusses the general notions of scientific discovery, then sections
3 and 4 apply these to discovery in economics and econometrics respectively.

Difficulties of empirical implementation do not detract from the invaluable
role that abstract theoretical formulations play in understanding economic be-
havior, merely that more is required for a useful empirical model than simply
imposing a theory, which, of necessity and by design, deliberately abstracts from
many complications. Rather than being imposed, theory formulations should
be retained when modeling as part of the process of evaluating them, jointly
with discovering what additional features are substantively relevant. Empirical
model discovery and theory evaluation therefore involves 5 key steps:

(I) specifying the object for modeling, usually based on a prior theoretical
analysis in economics;

(II) defining the target for modeling by the choice of the variables to analyze,
denoted {xt}, again usually based on prior theory;

(III) embedding that target in a general unrestricted model (GUM), to attenu-
ate the unrealistic assumptions that the initial theory is correct and com-
plete;
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(IV) searching for the simplest acceptable representation of the information in
that GUM;

(V) rigorously evaluating the final selection: (a) by going outside the initial
GUM in (III), using standard mis-specification tests for the ‘goodness’ of
its specification; (b) applying tests not used during the selection process;
and (c) by testing the underlying theory in terms of which of its features
remained significant after selection.

To illustrate these steps in turn, consider an observable variable, y, which is
postulated to depend on a set of m candidate ‘explanatory’ variables z, when a
sample of T observations is available, denoted {xt}= {yt,zt}. An economic analy-
sis suggests that:

y= f (z) (1)

Then, (1) is the object (I) for the empirical modeling exercise, the relationship
about which empirical knowledge is sought. The choice of {xt} is usually deter-
mined by the theoretical analysis depending on its purposes—testing theories,
understanding empirical evidence, forecasting possible future outcomes, or con-
ducting economic policy analyses–but as this aspect is subject-matter specific, it
is not addressed explicitly here. About the simplest example of (1) is a condi-
tional linear regression E[yt|zt]=β′zt:

yt =β′zt +εt (2)

where β is assumed constant and zt is treated as exogenous, with εt ∼ IN[0,σ2
ε ],

denoting an independent normal random variable with mean E[εt] = 0 and con-
stant variance σ2

ε .
Second, a common approach is to fit (2) to the data, imposing that theory

on the evidence. However, the form of f (·) in (1) depends on a range of pos-
sible theory choices of (e.g.) the utility or loss functions of agents, the precise
formulations of the constraints they face, the information they possess, and the
unknown effects of aggregation across heterogeneous individuals with differing
choice sets and different parameter values (see e.g., Hildebrand 1994). More-
over, there is no exact specification of a unit of time, so successive observations
are generally dependent, and lag responses are not known, again possibly differ-
ing across agents. The quality of the observed data is never perfect, so observa-
tions may be contaminated, leading to outliers. Nor are the underlying processes
stationary, with evolutionary changes ongoing, leading to integrated series, and
abrupt shifts inducing various breaks: economies have changed out of all recog-
nition over the past millennium. Thus, many key features of empirical models
are bound to be unknown at the outset of an investigation, however good the
prior theory. Consequently, section 5 addresses the basis for (II), namely the
derivation of the data-generating process (DGP) in the space of the m+1 vari-
ables {xt} being modeled, which is the joint density Dx(x1 . . .xT ), called the local
DGP (LDGP). All investigators wish to locate the DGP, rather than the LDGP,
but given the set of variables chosen for analysis, the best that can be achieved
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is their LDGP: that LDGP becomes the target for any modeling exercise as Dx(·)
contains all the relevant information. The theory-based object and LDGP target
are not only related by the choice of {xt}, the DGP is the outcome of the agents’
actions about which (1) theorizes, and which may in turn even change those ac-
tions. A complete and correct theory would perfectly characterize Dx(·), which
would correspond to the DGP itself (or at least a conditional variant thereof),
but absent such omniscience, only the form of (2) is given by the theory whereas
its properties are determined by the LDGP. Other choices of what variables to
analyze will create different LDGPs, and the theory of reduction assesses the
resulting losses of information (see e.g., Hendry 2009). Poor choices of {xt} can
lead to non-constant LDGPs that are difficult to model or interpret. However,
an LDGP can always be formulated with an innovation error, and can often be
expressed with constant parameters after ‘correcting’ for location shifts, so the
main evaluation tests discussed below require extending the information set to
check if any additions also matter.

Generally the choice of {xt} entails reductions from the DGP, but even if there
was no loss of relevant information, the LDGP generating {xt} would still re-
quire to be modeled. Our approach to (III) is to embed the putative LDGP in a
much larger formulation that allows for (a) other potentially relevant candidate
variables, (b) longer lags than might first be anticipated, (c) a wider range of
possible functional forms than linearity, as well as (d) multiple location shifts
and possible outliers that may contaminate the available data or induce param-
eter non-constancy. Section 6 considers these four extensions in turn. Because
change is such a pervasive feature of economies, any substantive mistakes in a
specification can seriously distort an empirical analysis. Consequently, all em-
pirical modeling complications must be addressed jointly if a useful model is to
result. The long history of failed macro-econometric models of all types attests
to the past inability to successfully confront this fundamental difficulty. For-
tunately, recent developments can allow for much more general formulations,
automatically creating extensions for longer lags, polynomial and exponential
functional forms, and multiple breaks.

A large GUM forces the need for stage (IV), to efficiently search for the sim-
plest acceptable representation. Here we face what look like two almost insuper-
able difficulties: (i) the generality of the specification at stage (III) will involve
very large numbers of variables, denoted N, posing a challenge for finding the
LDGP; (ii) N will almost always be larger than the number of observations, T.
As section 7 explains, automatic selection algorithms save the day. First, the-
oretical analyses and simulation findings of their properties confirm that the
costs of search are small even for large N. Secondly, by conducting a mixture
of contracting (general-to-simple) and block expanding searches, all candidate
variables can be considered subject to the minimal requirement that fewer, n,
matter substantively than T. By embedding the theory specification within the
GUM, and not selecting over its components, such an approach allows one to dis-
cover what matters empirically, find the simplest acceptable representation, and
simultaneously evaluate the theory. Thus, the m theory variables zt in (2) are
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retained during the search, while the remaining N −m are selected over. This
respects, but does not impose, the theory: the final selection may reveal that
only some, or perhaps none, of the zt are significant, or that their coefficient
estimates have uninterpretable signs or magnitudes, disconfirming (2) even if
direct estimation had appeared supportive.

These methods are not a replacement for, but an extension of and an improve-
ment upon, many existing practices in empirical economics. The basic frame-
work of economic theory has offered far too many key insights into complicated
behaviors to be lightly abandoned, and has made rapid progress in a large num-
ber of areas from auction theory through mechanism design to asymmetric infor-
mation, changing our understanding. But that very evolution makes it unwise to
impose today’s theory on data—as tomorrow’s theory will lead to such ‘evidence’
being discarded. Thus, one must walk a tightrope where falling on one side en-
tails neglecting valuable theory, and on the other imposing what retrospectively
transpire to be invalid restrictions. Empirical model discovery with theory eval-
uation seeks to avoid both slips. The available theory is embedded at the center
of the modeling exercise to be retained when it is complete and correct; but by
analyzing a far larger universe of possibilities, aspects absent from that the-
ory can be captured. There are numerous advantages as Hendry and Johansen
(2010) discuss. First, the theory is retained when valid. Second, it should be
rejected when it is invalid. Third, it could be rescued if the more general setting
incorporated factors the omission of which would otherwise have led to rejec-
tion. Fourth, a more complete picture of both the theory and confounding influ-
ences can emerge, which is especially valuable for policy analyses. Fifth, well-
specified selections avoid reliance on doubtful assumptions about the sources
of problems like residual autocorrelation or residual heteroskedasticity—which
may be due to breaks or data contamination—so that ‘corrections’ thereof in fact
fail to achieve valid inference. Finally, explaining the findings of rival models by
encompassing reduces the proliferation of contending explanations, which would
create major uncertainties if unresolved. Consequently, little is lost and much is
gained by embedding theory in general formulations.

Having found an acceptable parsimonious selection, a warrant is needed to
establish the ‘reality’ of the discovery, (V), by stringent evaluation of the findings,
so section 8 considers that aspect. Section 9 clarifies the implications of the
analysis for empirical model discovery in economics and concludes.

2. Scientific Discovery

A discovery entails learning something previously unknown. Since one cannot
know how to discover what is not known, there is unlikely to be a ‘best’ way of
doing so. That does not preclude some ways being better than others—not look-
ing is rarely a good way. Nevertheless, over the last five centuries the natural
and biological sciences have made huge advances, both theoretical and empiri-
cal, with sequences of discoveries. From the earliest written records of Babylon
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through ancient Egypt and the Greece of Pericles, discoveries abounded in many
embryonic disciplines from astronomy, geography, mathematics, and philosophy
to zoology. While fortune favored prepared minds, discoveries were often for-
tuitous or serendipitous. The ‘scientific method’, developed in the Arabic world
during the early Middle Ages with the works of scholars like Al-Biruni and Ibn
Sina (Avincenna), and formalized in the UK by Roger Bacon (see e.g., Hackett
1997), was a major advance, as it highlighted where gaps in knowledge existed,
delivered a systematic approach to filling those gaps, and in due course consol-
idated the findings in general theories and formulae. Even so, in both the nat-
ural and biological sciences, most imaginable ways of discovering have proved
successful in some settings: see Mason (1962), Messadié (1991) and compare
Popper (1959). Advancing an intellectual frontier essentially forces going from
the simple (current knowledge) to the more general (adding new knowledge). As
a model-building strategy, simple to general is fraught with difficulties (see e.g.,
Anderson 1962. Campos, Ericsson and Hendry 2005 provide an overview), so it
is not surprising that scientific discoveries are hard earned.

The progressivity of science, cumulating empirical findings that cohere with
theoretical ideas, is its most salient attribute. We clearly understand vastly
more than the ancient or medieval worlds: electricity lights our homes and
streets (see Fouquet and Pearson 2006 on the huge increases in lumens con-
sumed since 1300), computers calculate, planes fly, etc. As noted in Hendry
(2009), we can predict what changes to chips will, or will not, speed up calcula-
tions, and what aircraft designs will not fly. The path that leads to a scientific
discovery is irrelevant to its validity, and could be serendipity, careful testing,
or a theory prediction, whereas stringent evaluation and replicability are cru-
cial. Nevertheless, theories are rarely rejected by evidence alone, and are only
replaced when ‘better’ theories develop that explain more and account for some
previous anomalies (see e.g., Kuhn 1962; Lakatos and Musgrave 1974).

Luck, and its close relative serendipity, are often cited as sources of discov-
ery: examples include Alexander Fleming’s discovery of penicillin (see, e.g., Hen-
derson 1997), Henri Becquerel’s discovery of radioactivity, for which he shared
the Nobel Prize with Pierre and Marie Curie,1 and more recently, Arno Penzias
and Robert Wilson uncovering the background cosmic microwave radiation.2 In
the first two cases, and even more so with, say, Archimedes ‘Eureka’ discovery,
recognition of the significance of what is found is also crucial (i.e., why the rise in
his bath water allowed the assessment of an object’s density). However, brilliant
intuition can also succeed, as with Michael Faraday’s dynamo (see e.g., Holton
1986), as can systematic experimental exploration of all the alternatives, illus-
trated by Antoine Lavoisier isolating and establishing the properties of oxygen,
thereby finally refuting phlogiston theory (see e.g., Musgrave 1976), or Robert
Boyle’s law of gases (see e.g., Agassi 1977).

1 URL: http://nobelprize.org/nobel_prizes/physics/laureates/1903/becquerel-bio.html.
2 URL: http://nobelprize.org/nobel_prizes/physics/laureates/1978/wilson-lecture.html.
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Great experiments have clearly advanced scientific understanding (see Harré
1981), but discovery has also been driven both by false theories, as with Jo-
hannes Kepler’s attempts to characterize the planetary orbits by regular solids,
nevertheless leading to his famous laws (see, e.g., Holton 1988), and by ‘correct’
theories, as with the often-cited example of Isaac Newton’s theory of universal
gravitation and Arthur Eddington’s test of Albert Einstein’s theory of relativity
by the gravitational effects of the sun bending light (see his own account in Ed-
dington 1928), or Louis Pasteur’s germ theory of disease leading to pasteuriza-
tion and the rejection of Aristotle’s notion of ‘spontaneous generation’ (despite
objections that were seemingly valid at the time from a lack of knowledge of
thermophilic bacteria: see Walker 2002). Conversely, careful observation led to
William Harvey’s model of the circulation of blood (see Schultz 2002), to John
Snow’s tracking down the water borne source of cholera (see e.g., Smith 2002,
but contrast McLeod 2000), and to Edwin Hubble’s discovering that light from
distant astronomical objects was ‘redshifted’ in proportion to their distance (see,
e.g., Nussbaumer and Bieri 2009).

Moreover, the invention of new instruments enabled Galileo Galilei’s discov-
ery of the moons of Jupiter by a telescope (see Drake 1980), and of microbes by
Robert Hooke and Antonie van Leeuwenhoek using microscopes (see, e.g., Gest
2002; Bennet, Cooper, Hunter and Jardine 2003). The ‘natural experiment’ of
the Second World War reduced, then its termination raised, wheat consumption
in the Netherlands, which first dramatically lowered then raised the death rate
of young sufferers of celiac disease, and so led to the identification of gluten as
the cause (see Fasano 2009). Often ‘self testing’ was involved, most recently with
Barry Marshall drinking Helicobacter pylori to demonstrate that they caused
peptic ulcers, followed by antibiotics to show the cure.3 Finally, trial and error
on a vast scale was Thomas Edison’s route to producing a workable incandes-
cent lamp (see Nelson 1959; Lomas 1999). Other examples abound over time
and across countries: science is systematic only in retrospect.

Science is a deductive, not an inductive, discipline in the important sense ar-
ticulated by Herschel (1830) in his distinction between the context of discovery,
which we have just discussed, and the context of evaluation, later re-emphasized
by Popper (1963). Empirical findings remain anomalies until situated within a
theory; and science seeks an interlinked system of theories that mutually sup-
port the interpretations of evidence: radioactivity, dating fossils, plate tecton-
ics, geological time frames, and fMRI scanners are a classic instance. As noted
above, theories are abandoned only when a new theory can cover most of the
existing ground and explain some new phenomena, albeit that many empirical
discoveries have led to changes in theory. The consolidation of evidence also
plays a crucial role: the most famous is Einstein’s E = Mc2, which summarizes
a remarkable amount in a simple formula (see e.g., Farmelo 2002). Without that
stage, the mass of data would overwhelm by the huge costs of knowledge con-

3 Humourously recounted in http://nobelprize.org/nobel_prizes/medicine/laureates/2005/marshall-
lecture.pdf.
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sumption (Sims 1996 argues that data reduction is a key attribute of science:
also see Friedman 1974).

Despite the diversity in how discoveries were achieved, from theory through
evidence to luck or chance, there are seven aspects in common to the above ex-
amples. First, the theoretical context, or more generally, the pre-existing frame-
work of ideas, which may inhibit progress (phlogiston is a classic example), or
be a stimulus (as with quantum theory). Secondly, going beyond, or outside,
the existing state, by greater generality, a new tool, a chance innovation, or a
broader idea or perspective. Thirdly, the search for something: what is found
may not have been the original aim, though it certainly was on some occasions,
but there was an objective from the outset to be discovered. Fourthly, recog-
nition of the significance of what is found: the discovery usually relied in part
on fortune favoring the prepared mind. Fifthly, quantifying what is found, by
new measurements or experiments. Sixthly, rigorously evaluating the discov-
ery to ascertain its ‘reality’, sometimes by checking replicability, sometimes by
testing in new settings. Finally, parsimoniously summarizing all the available
information.

3. Discovery in Economics

While the literatures on the history and philosophy of science provide invalu-
able background, social sciences confront uniquely difficult modeling problems
of high dimensional, non-linear, inertial yet evolving systems, with intermittent
and often unanticipated abrupt changes. Social sciences also make discover-
ies, but historically in economics, most discoveries have come from theoretical
advances rather than empirical findings, as histories of economic thought from
Schumpeter (1954) to Blaug (1980) emphasize. Current theoretical approaches
tend to derive behavioral equations from ‘rational’ postulates, assuming optimiz-
ing agents with different information sets who face various constraints. Many
important developments have been achieved by such analyses, particularly in
understanding individual and firm behavior in a range of settings. Neverthe-
less, the essentially unanticipated financial crisis of the late 2000s has revealed
that aspects of macroeconomics have not been well represented by models based
on single-agent theories, nor has a timeless theory proved well adapted to the
manifest non-stationarities apparent in economic time series. The crucial differ-
ences induced by changes in behavior and their feedback onto outcomes must be
accounted for.

3.1 Change and Its Consequences
There are two fundamental differences between discoveries in social and phys-
ical sciences: the non-permanence of phenomena, and feedbacks of discoveries
onto behavior. Light waves were ‘bent’ in strong gravitational fields millennia
ago, are now and will be millennia in the future; many relationships in eco-
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nomics were very different 1000 years ago from now, and probably will be dif-
ferent again in 1000 years. Discoveries in astronomy can also be transient—a
comet that visits but once—and even appear unexpectedly, as with supernovae,
so the issue is not unique, but it is important as economies are intrinsically non-
stationary. Breaks are often viewed as a major problem for empirical models,
but are also a serious difficulty for theories in economics, few of which allow
for unanticipated sudden large shifts occurring intermittently (see Hendry and
Mizon 2010), including the recent financial crisis. Surprisingly, as discussed
in §6.3, using automatic empirical modeling methods that can detect and re-
move multiple location shifts entails that breaks may be handled more easily
empirically (albeit ex post), than by theories. Moreover, it is essential to do so:
unanticipated shifts of distributions are pernicious as they lead to non-ergodic
data, so no form of inference will be feasible until effective ways can be found
of ‘reducing’ the problem to one where (say) martingale-difference inputs can be
induced, as in the earlier setting of sequential factorization of dynamic processes
by Doob (1953).

The other issue, that discoveries in economics change economic reality, has a
long history. Economic arguments brought about free trade; and option pricing
theory is now widely used in practice. Thus economics itself induces change,
often in unexpected ways, and makes the modeling of change a key issue in dis-
covery, by seeking to uncover the less transient aspects of economic behavior.
It is simply impossible to treat the economy as a stationary process, even after
removing stochastic trends (unit roots) because distributions shift. Unantici-
pated changes must also impact substantively on how expectations are formed
by economic actors, and hence on how to analyze their behavior: it is unclear
how agents can form ‘sensible’ expectations about future events when shifts oc-
cur. Hendry and Mizon (2010) demonstrate that so-called ‘rational expectations’
based on previous conditional expectations are not rational in any sense, as they
are neither unbiased nor minimum mean-square error predictors once distribu-
tions shift. Indeed, inter-temporal theory calculations in economics also fail in
that case, as the law of iterated expectations across time periods does not hold
when the relevant integrals are over different distributions.

3.2 Implications for Prior-based Analyses
‘Prior distributions’ widely used in Bayesian analyses, whether subjective or ‘ob-
jective’, cannot be formed in such a setting either, absent a falsely assumed crys-
tal ball. Rather, imposing a prior distribution that is consistent with an assumed
model when breaks are not included is a recipe for a bad analysis in macroeco-
nomics. Fortunately, priors are neither necessary nor sufficient in the context
of discovery. For example, children learn whatever native tongue is prevalent
around them, be it Chinese, Arabic or English, for none of which could they
have a ‘prior’. Rather, trial-and-error learning seems a child’s main approach to
language acquisition: see Clark and Clark (1977). Certainly, a general language
system seems to be hard wired in the human brain (see Pinker 1994; 2002),
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but that hardly constitutes a prior. Thus, in one of the most complicated tasks
imaginable, which computers still struggle to emulate, priors are not needed.

Conversely, priors are insufficient to facilitate discovery unless ‘correct’, and
historically, false priors have been a bugbear of progress: witness the intellec-
tual battles of the past, from Copernicus versus an Earth centered Church; or
Thompson (1862; 1864) arguing against Darwin that the Earth could not be very
old, so evolution could not have had time to happen (despite the overwhelming
evidence from geology that he was wrong), a view he did not correct till Thom-
son (1899); or Fleeming Jenkin ‘proving’ that evolution must be convergent, not
divergent, because ‘continuous characteristics blend’—yet anyone could see that
the sex of a person was a discrete characteristic and did not blend. As noted
above, the pre-existing framework of ideas is bound to structure any analysis
for better or worse, but being neither necessary nor sufficient, often blocking,
and unhelpful in a changing world, prior distributions should play a minimal
role in data analyses that seek to discover useful knowledge.

4. Covert Discovery in Empirical Econometric Research

Histories of econometrics, such as Morgan (1990) and Qin (1993), also focus on
its theoretical advances, and while they discuss applied research as well, are not
filled with major empirical discoveries that have stood the test of time or altered
the course of economic analysis. Although the notion of empirical model discov-
ery in economics may seem to be a marked departure, it is a natural evolution
from existing practices: much of previous econometrics has covertly concerned
discovery. Despite the paucity of explicit research on empirical model discovery,
there are large literatures on closely related material (see Spanos 1990; 2006 for
a related view). Classical econometrics focused on obtaining the ‘best’ parame-
ter estimates, given the correct specification of a model and an uncontaminated
sample, yet also delivered a vast range of tests to check the resulting model—
to discover if it was indeed well specified. Model selection methods extended
that remit to find the subset of relevant variables and the associated parame-
ter estimates, again assuming a correct nesting set, so sought to discover the
key determinants of the variables being modeled. Non-parametric methods con-
cern discovering the functional form, and time-series ‘model identification’ is
discovering which model in a well-defined class best characterizes the available
data. None of these was framed as discovery, and each approach depended on
many assumptions about the validity of their chosen specification, often sus-
ceptible to empirical assessment, and by evaluating it later, proceeded from the
specific to the general. The following five-fold distinction helps summarize the
assumptions of the main different approaches, for the simple case of a regression
equation, since generalizations to other model classes are fairly obvious. Even
given the prevalence of serendipity in discovery, the ‘strategy’ of ‘data mining’ till
‘pleasing’ results are obtained has little to commend it, as parodied by Leamer
(1983) and Spanos (2000).
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4.1 Classical Econometrics
Here it is postulated that there is a relation with a constant parameter β:

yt =β′g (zt)+εt, t = 1, . . . ,T (3)

after known data transformations g (·) (such as logarithms) which make linear-
ity in β reasonable. The aim is to obtain the ‘best’ estimate of β, assuming the
complete and correct variables, z, and an uncontaminated set of observations,
T , where g(·) is known. Auxiliary assumptions often include that εt ∼ IID[0,σ2

ε ],
and perhaps a set of ‘instrumental variables’ {wt} (often the {zt}) claimed to
be independent of εt, which determine the choice of estimation method as least
squares, instrumental variables, or one of dozens of related methods (see Hendry
1976). Departures from the assumptions of (3) are treated as ‘problems’ to be
solved, such as residual serial correlation or heteroskedasticity, data contam-
ination, outliers, or structural breaks, omitted variables, functional-form mis-
specification, etc. Most econometrics textbooks provide tests for discovering if
these problems are present, often followed by recipes for ‘fixing’ them, since
unless (3) is perfectly pre-specified, all these issues must be resolved from the
evidence. Such an approach is covert and unstructured empirical model discov-
ery, with investigators patching their specifications to avoid the most egregious
flaws, often reporting estimates as if they were the first attempt.

4.2 Classical Model Selection
Although the starting point is a model like (3), again given the correct initial
z, g (·) and T , now z includes a set of candidate regressors, which is antici-
pated to include all the relevant explanatory variables, their functional forms
and lags etc., but perhaps also some irrelevant (or ‘small’) effects. The aim is
to find the subset of relevant variables, z∗t say, eliminate the irrelevant, then
estimate the associated (constant) parameters, β∗. This setting is more general
than §4.1, and the need to discover the relevant subset of variables is explic-
itly recognized, but auxiliary assumptions may include that εt ∼ IID

[
0,σ2

ε

]
, with

a set of ‘instrumental variables’ (often the {zt}) assumed independent of εt, de-
termining the choice of estimation method. As with classical econometrics, de-
partures from the assumptions underlying (3) are usually treated as problems,
such as residual serial correlation or heteroskedasticity, structural breaks etc.,
although some selection methods simply ignore all such problems to select the
‘best’ model on their given criterion function.

4.3 Robust Statistics
Despite the differences at first sight, the aim is to find a ‘robust’ estimate of β
in (3) by also selecting over T , assuming the correct set of relevant variables zt.
The key focus is avoiding data contamination and outliers, so discovering a sam-
ple, T ∗, where those are least in evidence. However, other difficulties, such as
residual serial correlation or heteroskedasticity, structural breaks, functional-
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form mis-specification etc., still need to be detected, and z rarely includes a large
set of candidate regressors to be selected over jointly with T ∗, so is essentially
assumed to be z∗.

4.4 Non-parametric Statistics
The objective is again to estimate β in (3) assuming the correct set of relevant
variables z, but seeking to discover g(·) without assuming a specific mathemat-
ical function, and possibly also leaving the ‘error distribution’ unspecified. As
before, all forms of mis-specification need to be checked, as even the most ‘non-
parametric’ formulation may provide a poor approximation to the LDGP (let
alone the DGP), and z rarely includes many candidate regressors, so once more
is assumed to be z∗. Data contamination can be pernicious as it distorts the
function found, but selection over T jointly with a non-parametric analysis is
uncommon.

4.5 Selecting Jointly
To achieve an approach that will be viable when the exact specification, the error
properties, the reliability of the data, the functional form, and the constancy of
the parameters all need to be chosen jointly, we must return to basics: how were
the data generated?

5. Formulating a ‘Good’ Starting Point

We conceptualize the data-generating process (DGP) as the joint density of all
the variables in the economy. It is impossible to accurately theorize about or pre-
cisely model such a high dimensional entity, that is anyway also non-stationary.
All empirical (and theoretical) researchers reduce the task to a manageable size
by implicitly formulating a ‘local DGP’ (LDGP), which is the DGP in the space of
the m+1 variables xt being modeled. The theory of reduction (see e.g., Hendry
1995; 2009) explains the derivation of the LDGP, which is the joint density
Dx(x1 . . .xT |θ) for a sample t = 1, . . . ,T, where the ‘parameter’ θ may be time
varying. The choice of {xt} is fundamental, and determines the properties of
Dx(·). Knowing the LDGP, one can generate ‘look alike data’ for {xt} that only
deviate from the actual data by unpredictable noise–so the LDGP Dx(·) is the
target for model selection, once {xt} is chosen.

The main reductions are aggregation, marginalization, sequential factor-
ization and conditioning. Marginalizing with respect to variables deemed to
be irrelevant a priori is a major reduction, possibly hazardous if some of the
variables are in fact relevant. Next, sequential factorization of Dx(x1 . . .xT |θ)
to

∏T
t=1Dxt (xt|xt−1, . . . ,x1,θt) produces the martingale-difference error εt = xt −

E [xt|xt−1, . . . ,x1] (see e.g., Doob 1953): Spanos (1986; 1999) provides an excellent
explanation. As E [εt|xt−1, . . . ,x1] = 0 ∀t entails E [εt|εt−1, . . . ,ε1] = 0 ∀t, then {εt}
is not serially correlated by construction. Conditioning on a subset of contem-
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poraneous variables requires that they be weakly exogenous for the parameters
of interest, and preferably super exogenous (see Engle and Hendry 1993) as dis-
cussed in §8.1. Failing to handle breaks in the DGP will lead to a non-constant
representation, as expectations should be written as Et[xt|·] when the underly-
ing distributions are non-constant. Although one cannot do better than know
Dx(·), modeling it is a daunting task.

Aggregation over some or all of time, space, commodities, agents, and endow-
ments is also essential to obtain usable economic data, but thereby precludes
any claim to ‘truth’. Only congruence is on offer in economics, where congru-
ent models match the LDGP in all measured attributes, as congruent triangles
match after rotation in 2-dimensions, even if one may actually be the cut-off
top of a pyramid. The LDGP is congruent with itself, so non-congruent mod-
els are clearly not the LDGP. Empirical congruence in a model is defined by
a homoskedastic innovation, εt, weakly exogenous variables for parameters of
interest, that should be constant and invariant for a relevant class of interven-
tions. In addition, selection criteria usually include theory consistent, identi-
fiable structures, with data-admissible formulations on accurate observations
that encompass rival models (i.e., account for their results: see Mizon 2003;
2008). Those six requirements exhaustively characterize the null hypotheses
to test, and test statistics thereof are essentially independent of the specifica-
tion tests for model selection based on sufficient statistics (see Mayo 1981), but
there are many alternatives against which to seek power to reject false nulls.
Congruence is testable and provides necessary conditions for structure, defined
as invariance over extensions of the information set across variables, time and
regimes. Nevertheless, congruence can be designed by model re-specification,
so is far from sufficient to justify a model: section 8 addresses post-selection
evaluation.

Next, one must relate the theory model to that LDGP target, jointly with
matching the target to the evidence. Early theories characterized the economy
as general equilibrium, but a general sequential dynamic dis-equilibrium would
be a better description. Prior reasoning, theoretical analysis, previous evidence,
historical and institutional knowledge are all important in avoiding complicated
and uninterpretable LDGPs. In wide-sense non-stationary processes, ceteris
paribus does not apply empirically, so too small a set of variables under con-
sideration may make it impossible to establish constant models that are inter-
pretable by the original theory. Even given a ‘good’ choice of {xt}, to adequately
characterize the resulting LDGP it is crucial not to omit substantively important
functions of its variables, such as lags, non-linear transformations, and indica-
tors for breaks, etc. Thus, we embed the target in a general model formulation,
which also retains, but does not impose, the theory-based variables. While the
lagged reactions in a model corresponding to the sequential factorization need
to be data based–as theory specifications of time units are rare–this is easily
accomplished and ensures a key attribute for valid statistical inference. Since
observations may be contaminated by measurement errors, an approach that is
‘robust’ against serious data contamination is needed, as is one that also tackles
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abrupt unanticipated shifts which induce various forms of breaks, so indica-
tors for outliers and location shifts are essential, helping ensure both more con-
stancy and near normality. Appropriate functional form transformations again
help with constancy and homoskedasticity. Also, the underlying stochastic pro-
cesses in economics are usually integrated (denoted I(1)), requiring treatment
of stochastic trends as well as using appropriate critical values for inferences
reducing to I(0).

As all these aspects must be discovered empirically, model selection is in-
evitable and ubiquitous, but can be undertaken in a general formulation where
valid inference is feasible. To utilize economic analyses when they cannot be
imposed empirically, one must embed the theory specification in the general em-
pirical formulation where the theory variables are not selected over, although
all other aspects are. Retaining theory variables does not ensure they will be
either significant or have their anticipated signs and magnitudes, but if the the-
ory were correct and complete, then Hendry and Johansen (2010) show that the
distributions of the estimated parameters of the theory variables would be unaf-
fected by selection. A larger set of variables is less likely to exclude what are in
fact important influences, at the possible cost of retaining adventitious effects.
These are asymmetric costs: the former is an order one error, the latter of order
1/T. Thus, it seems preferable to err on the side of profligacy at this stage, and
over, rather than under, include, so we consider automatic extensions of initial
formulations, then describe the search process in section 7.

6. Extensions to Nest the LDGP

Increasing the set of candidate variables to augment zt can only be done sensi-
bly by an investigator, as it changes the LDGP that is being modeled. However,
three other important extensions of a basic theory model can be created auto-
matically:

(i) functional form transformations for non-linearity;
(ii) longer lag formulation to implement a sequential factorization;

(iii) impulse-indicator saturation (IIS) for parameter non-constancy and data
contamination.

Castle and Hendry (2011a) discuss automatically creating approximations to
a wide range of functional forms, described in §6.1. Then §6.2 notes creating
longer lags, which is straightforward. Hendry, Johansen and Santos (2008),
Johansen and Nielsen (2009) and Castle, Doornik and Hendry (2009) discuss
automatically generating impulse indicators to saturate the sample with an in-
dicator for every observation. Combining these creates the general unrestricted
model (GUM), so we consider (i)–(iii) in turn.
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6.1 Automatic Non-linear Extensions
Since non-linearity comprises all functions extending linear, there is no guar-
antee that any specific low dimensional set will nest the LDGP. An optimal ap-
proach would include a minimal basis that spanned the relevant space of non-
linearity. There are many mathematical series expansions that can approximate
any continuous function arbitrarily closely, including polynomials, which is the
inital class we consider. Although only low order polynomials will be used, for
many variables, their squares and quartics are highly correlated, as are cubes
and quintics, so such approximations capture much of the non-linear variation.

A test for non-linearity in a feasible linear GUM is proposed by Castle and
Hendry (2010a), using a low-dimensional portmanteau test based on general
cubics with exponential functions of the principal components wt of the zt. Let
Σ̂ denote the m×m sample correlation matrix of the T ×m candidate variables
Z = (z1, . . . ,zT )′, possibly transformed to I(0) by appropriate differencing. The
eigenvalue decomposition of Σ̂ is:

Σ̂= ĤΛ̂Ĥ′ (4)

where Λ̂ is the diagonal matrix of eigenvalues {λ̂i} and Ĥ = (ĥ1, . . . , ĥm) is the
corresponding matrix of eigenvectors, with Ĥ′Ĥ= Im. The sample principal com-
ponents are computed as:

Ŵ= Ĥ′Z̃ (5)

where Z̃ = (z̃1, . . . , z̃T )′ are the standardized data, z̃ j,t = (z j,t − z j)/σ̃z j with z j =
1
T

∑T
t=1 z j,t, and σ̃z j = [ 1

T−1
∑T

t=1
(
z j,t − z j

)2]1/2, ∀ j = 1, . . . ,m. Then u1,i,t = w2
i,t,

u2,i,t = w3
i,t, and u3,i,t = wi,t exp(−|wi,t|) are created. When Σ is non-diagonal,

each wi,t is a linear combination of every zi,t, so w2
i,t involves squares and cross-

products of every zi,t etc. Their test is an F-statistic for the marginal significance
of adding the {u j,i,t} to the postulated model. There are only 3m additional terms
for m variables, whereas the number of potential regressors for general cubic
polynomials in the zi,t is:

Nm = m (m+1)(m+5)/6

leading to an explosion in the number of terms as m increases:

m 1 2 5 10 15 20 30 40
Nm 3 9 55 285 679 1539 5455 12300

Thus, one would quickly reach huge Nm, yet 3m = 120 even at m = 40, while
allowing for a wide class of functional relations.

They propose proceeding to a non-linear in the parameters formulation,
which we denote by f (zt,θ), only when the F-test rejects to avoid possible prob-
lems with identifying the parameters of the final specification of the non-linear
function (see e.g., Granger and Teräsvirta 1993). Functions like f (zt,θ), are
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often of an ogive type, such as a smooth-transition regression model (see e.g.,
Priestley 1981; Chan and Tong 1986 and Teräsvirta 1994) so involve interac-
tions of parameters, some of which will not be identified under a linear null that
entails a subset thereof are zero.

Instead of post-testing estimation, however, the {u j,i,t} could be included in
the GUM initially. After model selection, we then apply an encompassing test
against an investigator’s preferred functional form f (zt,θ). Once the null of
linearity has been rejected for {u j,i,t}, adding the f (zt,θ) to the final model no
longer poses identification issues. A test of the significance of an estimated
function, f (zt, θ̂), has three possible outcomes:

a) insignificant, so the LDGP is non-linear, but not of the preferred form;
b) significant, but some of the {u j,i,t} are as well, so f (zt,θ) helps provide a

more parsimonious but incomplete explanation;
c) significant, and none of the {u j,i,t} are, so f (zt,θ) parsimoniously encom-

passes the approximating model.
Although the last step of such an approach is not general to simple, an advan-
tage is that selecting the {u j,i,t} can be combined with impulse-indicator satu-
ration as in §6.3 (to tackle non-normality, outliers, breaks, and possible data
contamination) to help avoid non-linear functions inappropriately representing
data irregularities as non-linearity (see Castle and Hendry 2011a).

6.2 Creating Lags
Next, automatically create s lags xt . . .xt−s possibly modeled as a system:

xt = γ+
s∑

j=1
Γ jxt− j +εt (6)

Although systems can be handled, we focus here on single equations, so letting
xt = (yt,zt) formulate the dynamic linear model:

yt =β0 +
s∑

i=1
λi yt−i +

r∑
i=1

s∑
j=0

βi, j zi,t− j +εt (7)

6.3 Impulse-indicator Saturation
To tackle multiple breaks and outliers, for T observations add T impulse indi-
cators to the candidate regressor set. To understand how such a ‘saturation’ can
work, consider the simplest setting where yi ∼ IID

[
µ,σ2

ε

]
for i = 1, . . . ,T when µ

is the parameter of interest. Being uncertain of outliers, create the T indicators
1{t=ti}. First, include half the indicators, and record the significant outcomes:
doing so is just ‘dummying out’ T/2 observations for estimating µ. Then omit
those, and include the other half, recording significant outcomes again. Finally,
combine the two sets of recorded sub-sample indicators, and select the signifi-
cant ones. Under the null of no outliers or breaks, αT indicators will be selected
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on average at a significance level α. This ‘split-sample’ impulse-indicator sat-
uration (IIS) algorithm is the simplest implementation, but multiple unequal
splits are feasible: see Hendry et al. (2008).

Johansen and Nielson (2009) extend IIS to both stationary and unit-root au-
toregressions. When the error distribution is symmetric, for example, adding T
impulse-indicators to a stationary dynamic regression with r variables, coeffi-
cient vector β (not selected over) and population data second moment Ψ, where
D→ denotes convergence in distribution:

T1/2(β̃−β) D→Nr
[
0,σ2

εΨ
−1Ωβ

]
(8)

Thus, the rate of convergence of T1/2 remains, as does consistency, and the usual
asymptotic variance matrix of σ2

εΨ
−1. The efficiency of the IIS estimator β̃ with

respect to the OLS estimator β̂ is measured by the termΩβ, which depends on α,
and on the form of the error distribution. When T = 100 at α= 1/T, say, αT = 1%,
so despite including 100 extra candidate regressors, the distribution of β̃ in (8)
is almost identical to that of β̂, with a small efficiency loss of one observation
‘dummied out’ under the null. However, there is the potential for major gains
under alternatives of breaks and data contamination.

6.4 Specification of the GUM
Most major formulation decisions are now made: which m basic variables wt,
after transforming zt; their lag lengths s; functional forms (cubics of the princi-
pal components); and possible location shifts (any number, anywhere) leading to
the inestimable GUM:

yt =
r∑

i=1

s∑
j=0

βi, j zi,t− j +
r∑

i=1

s∑
j=0

κi, jwi,t− j +
r∑

i=1

s∑
j=0

θi, jw2
i,t− j +

r∑
i=1

s∑
j=0

γi, jw3
i,t− j

+
s∑

j=1
λ j yt− j +

T∑
i=1

δi1{i=t} +εt (9)

Then there are K = 4m(s+1)+s potential regressors, many of which are perfectly
collinear, plus T indicators in total, so one is bound to have N > T. That raises
the crucial question: how can a feasible model be selected from such a massive,
perfectly collinear starting point with N > T? The next section answers it, noting
that if (9) did not nest the associated LDGP, then neither would any special cases
thereof.

7. Model Selection 101

There are too many myths about model selection to disabuse them all here, but
an explanation of the elements of a generic simplification approach may clarify
their excellent behavior. All aspects of model selection, an essential component
of empirical discovery, have been challenged, and many views are still extant.



132 David F. Hendry

Even how to judge the status of any new entity is itself debated. Nevertheless,
current challenges are wholly different from past ones–primarily because the
latter have been successfully rebutted (see e.g., Hendry 2000). All approaches to
model selection face serious problems, whether selecting on theory grounds, by
fit–howsoever penalized–or by search-based methods. A key insight is that, fa-
cilitated by recent advances in computer power and search algorithms, one can
adopt an extended general-to-specific modeling strategy that avoids many of the
drawbacks of its converse. When N exceeds T, a general-to-specific approach
ceases to be applicable as there are too many candidate variables for the GUM
to be estimated. Nevertheless, the key notion of including as much as possible
jointly remains, albeit that expanding searches are required as well as simplifi-
cations. One crucial ingredient is not to undertake a forward search adding just
one variable at a time from a null model based on (e.g.) the next ‘best’ choice
on the given criterion. A formal approach to model discovery must take account
of all the decisions involved in model specification, evaluation, selection, and re-
duction, such that the end result is a viable representation of the main variables
of interest, with known inference properties.

To construct our explanation, first consider a simple version of the model in
(9):

yt =
N∑

i=1
βi zi,t +εt (10)

where the regressors are mutually orthogonal in population, E[zi,tz j,t] = λi,i for
i = j and 0 ∀i 6= j, with εt ∼ IN[0,σ2

ε ] when T >> N. We take N to be large,
say 1000, with T = 2000 (see Castle, Doornik and Hendry 2011a). The point
of this special case is to show both that ‘repeated testing’ need not occur when
selecting by first estimating (10), and that the number of irrelevant variables
(garbage) retained can be controlled. We let n of the βi be non-zero, where n is
usually much smaller than N. The corresponding variables are called relevant;
those with βi = 0 are irrelevant. However, a ‘substantively relevant’ variable is
one that would be statistically significant at a reasonable significance level α,
say α = 0.01, when the LDGP is estimated. The potency of the procedure on a
given test is the proportion of retained relevant variables, which should be close
to the power of the corresponding test in the estimated LDGP. The gauge, g, of
the procedure is the average proportion of retained irrelevant variables, which
should be close to α if the procedure works well. However, because selection
tries to retain only congruent specifications, insignificant variables may also be
retained when they happen to offset what would otherwise be an adventitiously
significant mis-specification test. Thus, gauge differs from the ‘false discovery
rate’, and potency from power.

After estimating (10), order the N sample t2-statistics testing each hypoth-
esis H0: β j = 0 as t2(N) ≥ t2(N−1) ≥ ·· · ≥ t2(1) (squaring to obviate considering signs).
The cut-off, k, between variables to be included or excluded is defined by t2(k) ≥
c2
α > t2(k−1) when c2

α is the chosen critical value. Variables with larger t2 values
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are retained and all other variables are eliminated. Only one decision is needed
to select the final model, even for N = 1000, so we call this a 1-cut approach.
Moreover, ‘goodness of fit’ is never considered, although the fit of the final out-
come is determined indirectly by the choice of c2

α. For stochastic problems, such
a ranking is itself stochastic, so can differ on different samples for t2-statistics
close to the critical value—however, that effect also applies to estimating a cor-
rectly specified LDGP equation, so is not a feature of selection per se.

So is this approach just a quick route to ‘garbage in, garbage out’? It could
be:

(a) if (10) bore no relation to the underlying DGP—but that is countered by
basing the initial GUM on the best available subject-matter theory, check-
ing that the selection is a congruent representation of the full sample
evidence and parsimoniously encompassing the GUM (see Hendry and
Richard 1989);

(b) if too loose a significance level was set (say 5% for N = 1000), so many
irrelevant variables are retained on average (about 50 at 5%)—but an in-
vestigator can set c2

α to maintain an average false null retention at one
variable using α ≤ 1/N, with α declining as T → ∞ to ensure that any
finite parameter LDGP will be consistently selected

(c) if the error distribution was highly non-normal, so conventional critical
values were inappropriate—but IIS can remove the non-normality suffi-
ciently to sustain Gaussian-based c2

α (see Castle et al. 2011a);
(d) if the relevant variables were not very significant—but then even the

LDGP would not deliver useful results: one cannot expect selection to dis-
cover the underlying reality better than knowing it up to a set of unknown
parameters (but see Castle, Doornik and Hendry 2011b on detecting many
‘small effects’).

While (10) is a ‘toy model’ of realistic selection, it also reveals why past ap-
proaches to model selection have such a poor reputation. Consider selecting to
maximize ‘goodness of fit’: that is bound to retain many more variables than
the n which are actually relevant, and has led to many ‘penalty functions’ be-
ing proposed to mitigate that difficulty. Unfortunately, such approaches either
are modifications of expanding-search algorithms (like stepwise or lasso), or are
part of procedures that consider all possible sub-models to select the ‘best’, both
of which suffer serious drawbacks as follows. Apart from the general problem
of such methods not checking congruence, forward selection must conduct in-
ference in under-specifications, so critical values for decisions will generally be
incorrect. Moreover, they use simple correlations when partial correlations mat-
ter in multiple-variable models, so are bound to mis-select when variables are
negatively correlated such that both need to be included before either is sig-
nificant. On the latter, there 2N possible sub-models, so for large N there is
no feasible α that can control spurious significance, and ad hoc procedures like
‘hold back sub-samples to test against’ are adopted as correctives.
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In non-orthogonal models, sample t2-statistics can change substantively as
different variables are eliminated, so 1-cut selection is unreliable. Nevertheless,
the aim is to determine an ordering of the variables that is related to their rele-
vance in the LDGP. There are many ways to undertake selection searches, and
to make decisions from the resulting findings, but large improvements in doing
so have occurred over the past 15 years. Multiple-path searches improve per-
formance dramatically, as Hoover and Perez (2009) demonstrated, but a more
systematic (second generation) method like PcGets (see Hendry and Krolzig
2009) is better still. The third generation of tree-search algorithms that ex-
amine the whole search space and discard irrelevant routes systematically, such
as Autometrics (see Doornik 2009a; Doornik and Hendry 2009), yield further im-
provements, and also handle settings where N > T by including block expand-
ing searches (see Doornik 2009b). Searches follows branches till no insignifi-
cant variables remain, then test for congruence and parsimonious encompass-
ing, backtracking if either fails till the first non-rejection is found. If the GUM
is congruent, then so are all terminals, comprising undominated, mutually-
encompassing representations. If several terminal models are found, they can
be combined or one selected (by, e.g., the Schwarz 1978 criterion). Single-path
reductions often fail because any mistaken elimination cannot be corrected later.

In practice, all the complications of empirical data need to be tackled jointly
using a formulation like (9). Since the regressors cannot now be orthogonal, the
initial t2 values need not represent the importance of the regressor in the LDGP,
so a search is required. Whatever the quality of the theory basis and the gen-
erality of the initial specification, the most likely state of nature is that some
variables are irrelevant, whereas some substantively relevant components are
inadvertently omitted as not known. Thus, selection takes place in the context
of available theory where even general initial models are likely to be under-
specified in some ways while over-specified in others. Such general settings are
difficult to analyze, but Monte Carlo simulations, such as those reported in Cas-
tle and Hendry (2010b) and Castle et al. (2009; 2011a) suggest that Autometrics
selections provide a ‘good’ approximation to the LDGP parameters in terms of
their mean-square errors. Castle et al. (2011a) describe the selection process in
more detail, explain the selection criteria, and consider the evaluation of con-
gruence. Hendry and Krolzig (2005) discuss (approximate) post-selection bias
corrections which take into account that the selection criterion t2(k) ≥ c2

α only re-
tains large values, and Castle, Fawcett and Hendry (2009; 2011) respectively
apply the approach to ‘nowcasting’ and forecasting. Finally, Hendry and Krolzig
(2005) and Castle et al. (2011b) discuss why perfect collinearity between regres-
sors in the GUM is not problematic for multi-path search algorithms, and can
be used to resolve the difficulty raised by Campos and Ericsson (1999) that the
initial parametrization may determine the parsimony of the final selection.

Returning to the formulation in section 4, the aim was to specify a sufficiently
general GUM that nested the LDGP chosen for analysis by the investigator, so
tackled all the complications of economics data jointly, then select the most par-
simonious congruent representation feasible to discover the β∗ associated with
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the relevant functions g∗(z∗t ) . . .g∗(z∗t−s), where g∗(z∗) denotes the appropriate
functions of the selected subset of the basic explanatory variables z, including s
lags as necessary, jointly with dt and T ∗, where dt denotes the vector of indi-
cators for breaks and outliers, using the effective sample T ∗. Then the finally
chosen model is the congruent parsimonious-encompassing representation:

λ (L) yt =β∗ (L)′g
(
z∗t

)+γ′dt +vt (11)

when vt is the unexplained component, and L denotes the lag operator in (11).
Such a task includes establishing the validity of conditioning on any contempo-
raneous variables, perhaps used as instruments, as well as ensuring that {vt} is
an innovation process from valid sequential factorization. A similar formulation
applies when yt is a vector of target variables to be modeled, although we have
not addressed that setting here.

8. Evaluating Selected Models

To avoid blurring the boundaries between discovery and evaluation, we now con-
sider what warrant can be established independently of the empirical model dis-
covery process, additional to congruence and the ‘corroboration’ of the initial the-
ory specification (see Spanos 1995 on testing theories using non-experimental
data). Since ‘anything goes’ in the former, as section 2 stressed, stringent evalu-
ation is required in the latter (see e.g., Mayo and Spanos 2006). Such a warrant
has to invoke new data, new evidence, new instruments or new tests. William
Herschel discovered Uranus because he had a detailed map of the night sky in
his brain, and could perceive change against it. However, his finding was only
accorded the status of a planet when its orbit was calculated to be round the
sun, and its sighting was reliably replicated by others. Perhaps it was no ac-
cident that his son, John Herschel (1830) emphasized the distinction between
discovery and evaluation.

But independent stringent substantive evaluation is difficult. For example,
as discussed in §8.2, accurate forecasting is insufficient. Indeed, even mak-
ing ‘accurate predictions’ is not sufficient grounds for accepting a theory model,
where prediction denotes stating in advance of a test what its result should
be, which need not be in advance of the event: Ptolemaic epicycles predicting
eclipses of the moon are a well-known example (see Spanos 2007). Returning
to the example of light waves being bent by the sun’s gravity, a false theory
that this was due to the weight of photons combined with an invalid measure-
ment of that weight could be designed to successfully predict the magnitude
of bending as judged by distortions of light from distant stars during eclipses.
Moreover, successive successful predictions can combine to refute the very the-
ory each alone corroborated (see e.g., Ericsson and Hendry 1999).

Correct theories can also make false predictions. Two famous cases are the
integer masses of elements which measurements always contradicted—until iso-
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topes were discovered; and Pasteur’s germ theory discussed above. The Duhem-
Quine problem (see e.g., Harding 1976) suggests it is difficult to disentangle
which aspect led to any unsuccessful outcome, so failed evaluations require ‘de-
tective work’—automatic methods will need supplemented by human insight.

Conversely, the entire framework may be incorrect, including the measure-
ment system and the basis for testing, but as the best available, it is the ap-
proach that will be advanced. In the physical and biological sciences, huge ad-
vances have been made and embodied in new procedures, new forms of energy,
and new materials that have transformed living standards. Major corrections
to a framework fit with the ‘paradigm shift’ notion from Kuhn (1962), where the
fads and fashions of one generation of economists (say, e.g., marginalists, Key-
nesians, neo-classicists etc.) are overthrown in favor of another, perhaps no less
‘real’ approach, when a conjunction of apparently adverse evidence combines
with new thinking. Expanding a frontier perforce offers only partial explana-
tions, and many of the difficulties in economics arise from the non-stationarity
of the process being investigated, so empirical discoveries and evaluated theo-
ries need not be permanent, notwithstanding the claims in Robbins (1932), or
the implicit assumption of most extant economic theories. Above, the relevant
theory was embedded in the general model, so a powerful evaluation is if all the
additional candidate effects transpire to be irrelevant.

A crucial aspect for a successful warrant seems to be making repeated dis-
tinctly-different predictions, none of which is refuted, using a given model con-
sistent with the general theoretical framework. Here economic policy can play a
major role: many novel changes in fiscal, monetary, tax and benefit policies are
always happening, and at least the first two inevitably involve location shifts
with consequences that can be tested against the predictions of models. Few are
likely to survive unscathed, but if any did, they would offer a useful basis for fu-
ture policies, even though other changes will inevitably occur outside the policy
process (see e.g., Hendry and Mizon 2005). Matching such responses to predic-
tions requires a form of causal connection between the policy variables and the
outcomes, as well as the model capturing such relationships, an issue to which
we now turn.

8.1 Testing Super Exogeneity
Parameter invariance under regime shifts is essential to avoid mis-prediction
when using policy models. Super exogeneity combines parameter invariance
with valid conditioning, so is a key concept for economic policy (see Engle and
Hendry 1993). An automatic test thereof in Hendry and Santos (2010) uses
impulse-indicator saturation in marginal models of the conditioning variables
(i.e., models for the zi,t in (10), say), retaining all the significant indicators, then
testing their relevance in the conditional model. No ex ante knowledge of timing
or magnitudes of breaks is required, and an investigator need not know the
LDGP of those marginal variables. The test has the correct size under the null
of super exogeneity for a range of sizes of the marginal-model saturation tests,
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with power to detect failures of super exogeneity when location shifts occur in
the marginal models. This provides one ‘outside’ test to stringently evaluate a
selected policy model. A related test for invariance in expectations models is
proposed in Castle, Doornik, Hendry and Nymoen (2011c).

Moreover, super exogeneity is close to providing a sufficient condition for
causality as follows (see e.g., Hendry 2004). Reconsider the model in (10) when
N = 1 (for simplicity) and (10) coincides with the DGP:

yt =βzt +εt (12)

Then if ∂yt/∂zt =β constantly for a range on interventions on {zt}, then zt is both
super exogenous for β and must be causing the changes in yt, albeit possibly
through an intermediary to which zt is also related by invariant parameters.
Unfortunately, neither success nor failure in forecasting need help evaluation.

8.2 Forecasting
A forecast is a statement about the future, and as its name implies, like casting
dice, or fishing lines, or casting spells (see Hendry 2001), forecasting is a chancy
affair. Specifically, the lack of time invariance in economics renders both forecast
failure or success inappropriate criteria for judging the validity of a theory, or
even a forecasting model. Despite numerous papers demonstrating these state-
ments, from Hendry and Mizon (2000) through Clements and Hendry (2005);
Castle, Fawcett and Hendry (2010); Castle et al. (2011) to Castle and Hendry
(2011b), who emphasize that there need be no connection between the verisimil-
itude of a model and any reasonable measure of its forecast accuracy, forecasting
success is often proclaimed to be the ‘gold standard’ of model evaluation. That
claim cannot be proved. First, Miller (1978) and Hendry (1979) highlight that
in a stationary, ergodic world, forecasts from least-squares estimated models
must unconditionally attain their expected forecast accuracy independently of
the goodness of the specification or its closeness to the DGP. Ptolemaic epicy-
cles again spring to mind. Thus, ‘success’ need not relate to even congruence.
Accuracy with success sounds more stringent, but depends on the intrinsic un-
certainty in the entity being forecast—it is easy to forecast low-variance out-
comes ‘accurately’. Even in a non-constant world, transformations that robus-
tify models against systematic forecast failure are just as effective when models
are badly mis-specified.

Secondly, a simple analogy explains why the converse of forecast failure may
also be indecisive. Consider Apollo 13’s ill-fated journey to the moon in April
1970. The craft was predicted to land at a specific time and date, but was
knocked off course en route by an unanticipated oxygen cylinder explosion. Con-
sequently, NASA’s forecast was systematically and badly wrong—increasingly
so as the days go by. But that forecast failure was not due to poor forecasting al-
gorithms, nor does it refute the underlying Newtonian theory of universal grav-
itation. Rather, it reveals that forecast failure is mainly due to unanticipated
location shifts occurring in the forecast period.
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9. Conclusion: Empirical Model Discovery in Economics

We can now clarify what empirical model discovery entails in economics. Most
specifications of models intended to be matched against data are derived from a
pre-existing theory. For example, (1) in §1 was probably derived from an opti-
mization problem postulated for a single agent, subject to some implicit ceteris
paribus conditions. There are many styles of implementation, from tight the-
oretical specifications to be calibrated quantitatively, to using (1) as a guide to
the set of variables and the possible form of relationship. To be applicable to
the real world, economic theory has to explain the behavior of the agents who
create the DGP. The LDGP is then a reduction of the DGP to the subset of vari-
ables believed still to capture the relevant behavior, as discussed in section 5.
However, since so many features of any model are unknown until the data are
investigated, it seems crucial to re-frame empirical modeling as a discovery pro-
cess, part of a progressive research strategy of accumulating empirical evidence,
based on extending the chosen set x in the theory to a general model (§6), then
selecting an appropriate representation (§7) which retains and evaluates that
theory yet jointly investigates the relevance of longer lags, functional forms, out-
liers and shifts, inter alia. Globally, knowledge augmentation perforce proceeds
from the simple to the general; but locally, it need not do so. ‘Keep it simple
stupid’, the so-called KISS principle, at best applies to the final selection, and
certainly not to the initial model.

Thus, automatic empirical model discovery can be seen to require the same
seven stages noted above as common aspects of discovery in general. The first
involves the prior theoretical derivation both of the relevant set x defining the
LDGP, and of the relationships between its components, specifying preferred
functional forms, lag reactions, etc., for the retained formulation.

The second is the automatic creation of a more general model than initially
envisaged by an investigator. To reiterate, the choice of the m+1 variables to
analyze is fundamental, as it determines what the target LDGP is, whereas
the other extensions (lags, non-linear functions, impulse-indicator saturation,
etc.) determine how well that LDGP is approximated. Failure to include sub-
stantively important influences at either step will usually lead to non-constant
relationships that are hard to interpret—and probably be dominated by an in-
vestigator willing to consider a broader universe of determinants. When a theory
model is simply imposed on the evidence, little can be learned—reaching outside
is essential to reveal phenomena that were not originally conceived. However,
empirical model discovery is not an inductive approach, since the prior theory
still plays a key role in structuring the framework, and is the vehicle for thinking
about the basic set xt of determinants and how they might matter. In macroe-
conomic models confronting wide-sense non-stationary data, no theory is able to
cover all aspects, but ideas remain important as they can be embedded in and
guide the general model. As discussed, if correct, theory variables should be
retained in the final selected model, perhaps augmented by features where the



Empirical Economic Model Discovery and Theory Evaluation 139

theory was incomplete, which had such features been omitted, might have led to
its rejection, as illustrated in Hendry and Mizon (2011).

Thirdly, having created a general initial model, efficient selection is essential
to find the representations to which it can be reduced without loss of relevant
information. Model selection then plays a key role, and if the first two stages
created an initial set of N > T candidate variables, selection has to be automatic
since the scale is too large for humans. An efficient selection method should
have a small probability of retaining irrelevant variables, and a probability of
retaining relevant variables similar to the LDGP when conducting inference at
the same significance levels. By embedding the theory model as a retained fea-
ture, selection after orthogonalizing with respect to all other variables ensures
either the same estimator distributions when the theory is complete and correct,
while stringently evaluating that theory against a wide range of alternatives, or
learning that it is not valid and concluding with an improved model.

Next, the algorithm has to recognize when the search is completed, namely
when a congruent parsimonious-encompassing representation has been found
characterizing the target LDGP. Such selections are called terminal models.
Multiple mutually-encompassing terminals are possible, especially when vari-
ables are highly collinear and relatively loose significance levels are used, but at
tight significance usually one selection appears. However, should forecasting be
an objective as in §8.2, there may be advantages to combining terminals.

Fifthly, to appropriately quantify the outcome requires near unbiased pa-
rameter estimates with small mean-square errors (MSEs), and a near unbiased
estimate of the equation standard error. Approximate bias corrections are shown
in Hendry and Krolzig (2005) to substantially reduce the MSEs of any adventi-
tiously retained irrelevant variables. Near normality is important both for accu-
rate inferences during selection, and for the bias corrections which are derived
under the null of a Gaussian distribution. Here, IIS plays an important role in
removing breaks and outliers to facilitate normality. Throughout, an appropri-
ate estimator is essential, so it is important to test exogeneity in the final model
as in §8.1.

The sixth step is evaluating the resulting discovery. Since all the theory and
data evidence will have been employed in the first five stages, new data, new
tests or new procedures are needed for independent evaluation of the selection.
When the initial general model is estimable from the available sample, then its
evaluation by mis-specification testing is one of the first activities in empirical
modeling. When that is infeasible, an initial reduction to N < T is required
before such tests are conducted, although they could reject the null of congruence
at that point. We do not use ‘hold-back’ samples, both because the lack of time
invariance makes it unclear what is learned if the results differ, and even when
the DGP is constant, doing so is inefficient: see e.g., Lynch and Vital-Ahuja
(1998); Hendry and Krolzig (2004).

The final step is to summarize the findings parsimoniously in a model that is
undominated at the significance level α used. This is almost automatic given the
selection criterion of a congruent parsimonious-encompassing representation—
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but not quite. Having simplified the model to a size a human can grasp, various
further simplifications may suggest themselves, including: combining indica-
tors in a single dummy (see e.g., Hendry and Santos 2005); combining lags of
variables into more interpretable forms (see e.g., Hendry 1995), or combining
other groups of variables (see e.g. Campos and Ericsson 1999); replacing unre-
stricted non-linear functions by an encompassing theory-derived form, such as
an ogive (see Castle and Hendry 1995); and so on, again requiring human in-
tervention. All seven stages can be interweaved for a practical approach as we
have described, enhancing the scope and capabilities of empirical researchers,
not replacing them. Other disciplines are experimenting with automated em-
pirical discovery (see e.g., King et al. 2009) with some success, and the concepts
and methods involved may themselves prove a fruitful ground for analyses by
philosophers of science.
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