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This article summarizes arguments against the use of power to analyze data, and illustrates a key pitfall: Lack
of statistical significance (e.g., p O .05) combined with high power (e.g., 90%) can occur even if the data
support the alternative more than the null. This problem arises via selective choice of parameters at which
power is calculated, but can also arise if one computes power at a prespecified alternative. As noted by earlier
authors, power computed using sample estimates (‘‘observed power’’) replaces this problem with even more
counterintuitive behavior, because observed power effectively double counts the data and increases as the
P value declines. Use of power to analyze and interpret data thus needs more extensive discouragement.
Ann Epidemiol 2012;22:364–368. � 2012 Elsevier Inc. All rights reserved.
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INTRODUCTION

Use of power for data analysis (post hoc power) has a long
history in epidemiology (1). Over the decades, however,
many authors have criticized such use, noting that power
provides no valid information beyond that seen in P values
and confidence limits (2–9). Despite these criticisms,
recommendations favoring post hoc power have appeared
in many textbooks, articles, and journal instructions, espe-
cially as a purported aid for interpreting a ‘‘nonsignificant’’
test of the null. Although such recommendations have
dwindled in mainstream journals, as Hoenig and Heisey
note (6), a search on ‘‘power’’ through journal archives
reveals that the practice and its encouragement survives
(10). Furthermore, it is still common in internal reports,
especially for litigation, where it may be used to buttress
claims of study adequacy when in fact the study has inade-
quate numbers to reach any conclusion.

Statistical power is the probability of rejection (‘‘signifi-
cance’’) when a given non-null value (the alternative) is
correct. That is, power is the probability that p ! a under
the alternative, where a is a given maximum allowable
type I error (false positive) rate. Among the problems with
power computed from completed studies are these:

1. Irrelevance: Power refers only to future studies done on
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to the estimates from the sample used in the power calcu-
lation; for a study as completed (observed), it is analogous
to giving odds on a horse race after seeing the outcome.

2. Arbitrariness: There is no convention governing the free
parameters (parameters that must be specified by the
analyst) in power calculations beyond the a-level.

3. Opacity: Power is more counterintuitive to interpret
correctly than P values and confidence limits. In partic-
ular, high power plus ‘‘nonsignificance’’ does not imply
that the data or evidence favors the null (6).

The charge of irrelevance can be made against all fre-
quentist statistics (which refer to frequencies in hypothet-
ical repetitions), but can be deflected somewhat by noting
that confidence intervals and one-sided p values have
straightforward single-sample likelihood and Bayesian
posterior interpretations (11, 12). I therefore review the
arbitrariness and opacity issues with the goal of illustrating
them in simple numerical terms. I then review how
‘‘observed power’’ (power computed using sample esti-
mates), which is supposed to address the arbitrariness issue,
aggravates the opacity issue. Like many predecessors (2–9), I
conclude that post hoc power is unsalvageable as an analytic
tool, despite any value it has for study planning.
THE ARBITRARINESS OF POWER

A P value has no free parameter and a confidence interval
has only one, a, which is inevitably taken to be 0.05. In
contrast, in addition to a, power also depends on the alter-
native and at least one background parameter (e.g., baseline
incidence); because there is no convention regarding their
choice, power can be manipulated far more easily than
a p value or a confidence interval. The reason for lack of
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Selected Abbreviations and Acronyms

FDA Z U.S. Food and Drug Administration
RR Z relative risk

convention is not hard to understand: The alternative and
any background parameter are too context specific (even
more context specific than an a-level).

The following example, although extreme, is real and
illustrates the plasticity of power calculations compared
with P values and confidence intervals. While serving as
a plaintiff statistical expert concerning data on the relation
of gabapentin to suicidality, I was asked to review pooled
data from randomized trials as used in a U.S. Food and
Drug Administration (FDA) alert and report (13) regarding
suicidality risk from anti-epileptics (the class of drugs to
which gabapentin belongs) and defense expert calculations.
The defense expert statistician (a full professor of biostatis-
tics at a major university and ASA Fellow) wrote:

Assuming that the base-rate of suicidality among
placebo controlled subjects is 0.22% as stated in
the FDA alert, we would have power of 80% to
detect a statistically significant effect of gabapentin
relative to placebo for gabapentin alone in the
4932 subjects (2903 on drug and 2029 on placebo)
used by FDA in their analysis, once the rate for gaba-
pentin reached 0.70%, or a relative risk of 3.18. This
computation reveals that even for the subset of gaba-
pentin data used by FDA in their analysis, a signifi-
cant difference between gabapentin and placebo
would have been consistently detected for gabapen-
tin alone, once the incidence was approximately
three times higher in gabapentin treated subjects
relative to placebo (14, p. 7).

The computation and conclusion do not withstand scru-
tiny. With regard to problem 2 above, note that

(a) There were only 3 cases observed in the 28 placebo-
controlled gabapentin trials contributing to these
numbers, and only one case among the placebo groups;
thus, actual observed baseline rate in the gabapentin trials
was 1/2029 Z 0.05%. The figure of 0.22% used in the
expert’s calculation was more than four times this rate; it
is not from placebo-controlled trials of gabapentin, but is
instead from all 16,029 placebo controls in 199 random-
ized trials of all types of anti-epileptics. The gabapentin
trial controls are only 2029 of 16,029 or 13% of these
controls; furthermore, only 7% of the gabapentin trial
patients were psychiatric (high suicide risk), compared
with 29% of patients in other trials (13, Table 8), so
the lower rate in gabapentin controls is unsurprising.
(b) The value of the relative risk (RR) as 3.18 in the power
calculation is back-calculated to produce 80% power,
rather than determined from context; for example,
there was no plaintiff claim that an effect this large
was present. In many legal contexts, a guideline used
for tort decisions is instead RR Z 2, based on the
common notion that this represents a (2 � 1)/2 Z
50% individual probability of causation. This notion
is incorrect in general, but tends to err on the low side
of the actual probability of causation at RR Z 2 (15–
17); thus, RR Z 2 is still useful as a pragmatic upper
bound on the RR needed to yield 50% probability of
causation.

If one uses the baseline rate of 0.22% cited by the expert,
the power for detecting RR Z 2 is under 25%; if one uses
instead the 0.05% seen in the gabapentin trials, the power
for detecting RRZ 2 is under 10%. Thus the power reported
by the defense expert was maximized by first taking the high-
er risk population as the source of the baseline rate, and then
finding an RR that would yield the desired power.

Regardless of one’s preference, the figures illustrate the
dramatic sensitivity of the power calculations to debatable
choices. Of course, all the powers are arguably irrelevant
to inference (problem 1) (4–9): The mid-P 95% odds-ratio
confidence limits (8, Ch. 14) from the same combined
data are 0.11, 41, whereas the approximate risk-ratio limits
(8, Ch. 14) after adding ½ to each cell are 0.15 and 8.8, both
showing that there is almost no information in the gabapen-
tin trials about the side effect at issue.
POWER IN A PERFECT RANDOMIZED TRIAL

In the previous example, the low adverse event rate in
controls severely limited the actual (before trial) power
and after trial precision. However, genuinely high power
can coincide with nonsignificance, regardless of whether
the power is computed before the study or from the data
under analysis. This phenomenon seems to especially chal-
lenge intuitions. Hence, I provide a simple, hypothetical
example (with reasonable rates for common safety evalua-
tion settings) in which there is high power for RR Z 2
and the P value for testing RRZ 1 (the null P value) exceeds
the usual significance cutoff a of 0.05, yet standard statistical
measures of evidence favor the alternative (RR Z 2) over
the null (RR Z 1). The example is designed to exclude
other issues such as bias, with a rare outcome and large
case numbers to keep the computations simple (although
the figures resemble those seen in large postmarketing
evaluations).

Suppose a series of balanced trials randomize 1000
patients to a new treatment, 1000 to placebo treatment,



TABLE 1. Hypothetical randomized trial data exhibiting
‘‘nonsignificance’’ and high power, yet evidential measures favor
RR Z 2 over RR Z 1

New treatment Placebo

Adverse events 48 32

Total 1000 1000
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with no protocol violations, losses, unmasking, and so on,
leading to the combined data in Table 1.

From conventional 2 � 2 table formulas treating the log
RR estimate as an approximately normal variate (see
Appendix) we would then find

� P Z .07 (and thus ‘‘not significant at the .05 level’’) for
the null hypothesis that the RR is 1.

� Assuming the 32 events observed arm were as expected in
the placebo group, the power for RR Z 2 at aZ0.05
computed from these data is over 85%.

Based on these results, do the data favor RR Z 1 over
RR Z 2?

Here are some relevant statistics to answer the question:

a) The RR estimate is 1.50; in proportional terms, 1.50 is
closer to 2 than to 1.

b) The 95% confidence limits are 0.97 and 2.33; in propor-
tional terms, 1 is closer the lower limit than 2 is to the
upper limit.

c) The likelihood ratio comparing RR Z 2 vs. RR Z 1 is
about 2.3.

d) The P value for RR Z 2 is 0.20, 3 times the p value for
RR Z 1.

e) The value of RR having the same p value and likelihood
as the null (the ‘‘counternull’’ (18)) is about 1.52Z 2.25,
which is further from the RR estimate than is 2.

Thus, despite ‘‘nonsignificance’’ (p O .05 for RR Z 1)
and power approaching 90% for RR Z 2 at a Z 0.05, the
results favor RR Z 2 over RR Z 1 whether one compares
them using the point estimate, the confidence interval, their
likelihoods, their p values, or the counternull value.
OBSERVED POWER

To avoid the arbitrariness problem, post hoc power analyses
often focus on ‘‘observed power,’’ that is, the power
computed using the point estimates of the parameters in
the calculation (the baseline rate and effect size). One
problem with observed power is that it will make most any
study look underpowered (5): In approximately normal situ-
ations with a Z 0.05, such as those common in epidemio-
logic studies and clinical trials, the observed power will
usually be less than 50% when p O a (although moderate
exceptions can occur (6)). In the hypothetical example,
the observed power is only about 45%.

Observed power is plagued by nonintuitive behavior,
traceable to the fact that the alternative used in an
observed power calculation varies randomly and may be
contextually irrelevant; hence, the observed power is also
random like a p value, rather than fixed in advance as in
ordinary power calculations (6). One consequence is
that, just as a p value can be far from the false-positive
(type I error) rate of the test (19), so observed power can
be far from the true-positive rate (sensitivity) of the test.
Even more startling is the ‘‘power approach paradox’’
detailed by Hoenig and Heisey (6): Among nonsignificant
results, those with higher observed power are commonly
interpreted as stronger evidence for the null, when in
fact just the opposite is the case. Observed power is merely
a fixed transform of the p value, which grows as the p value
shrinks; thus, higher observed power corresponds with
a lower P value and lower relative likelihood for the null
(6). In other words, higher observed power implies more
evidence against the null by common evidence measures,
even if the evidence is ‘‘nonsignificant’’ by ordinary testing
conventions.

Observed power also involves and encourages a double
counting of data. To illustrate, consider the following state-
ment: ‘‘We observed no significant difference (p Z .10)
despite high power.’’ Introducing observed power alongside
p gives the impression that one has two pieces of information
relevant to the null. But because observed power is merely
a fixed transform of the null p value, it adds no new statistical
information; it just an awkward rescaling of the null p value
that is even harder to interpret correctly than that p value
(which is notorious for its misinterpretation (8, 20, 21)
even though one-sided p values do have simple Bayesian
interpretations (11)). In contrast, confidence limits cannot
be constructed from a single p value, and thus do supply addi-
tional and more easily interpreted information beyond
a single p value.
DISCUSSION

There are elements of arbitrariness in all analyses. For all
their problems, conventions are an obstacle tomanipulation
of results. Thus, although a p value can vary tremendously
depending what value of a measure (such as RR) is being
tested, convention has decreed the null p value (e.g., for
RR Z 1) as one that must be included if testing is done.
Of course, such conventions have side effects, and arguably
many of the objections to statistical testing and p values
stem from the focus on the null testing. But, as with power,
these objections would be partially addressed if a conven-
tional alternative value was always tested as well (e.g.,
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RRZ ½ or RR Z 2 depending on the directions observed
and expected for the association).

Likewise, the convention of fixing the test criterion a at
0.05 is arbitrary, but has likely prevented its manipulation.
This convention has carried over into interval estimation
as the nearly universal 95% level seen in both confidence
intervals and posterior intervals, and remained in place
despite attempts to unseat it by using a 90% level (22).
From a precision perspective, however, shifting to 90%
has modest implications, as it narrows approximate normal
intervals by only 1 � 1.645/1.960 Z 16%; furthermore,
the reader is warned of this narrowing by the statement of
90% accompanying the interval. In contrast, power changes
arising from shifts in the baseline rate or alternative can
have far more spectacular impact, and yet come with no
reference point, simple calculation, or even intuition to
warn of this impact.

The latter arbitrariness problem has led to use of observed
power, which brings a host of its own problems. Nonethe-
less, one might ask if observed power or the like remains
useful for speculating how much power a future study would
have. I would question even that much utility: The observed
data are almost never the only source of information on
which to base such a forecast. The alternative of interest
should be at least partly determined by what effect size is
considered important or worth detecting, rather than
the noisy and possibly biased estimate observed from exist-
ing data.

Calculating power from data using a fixed alternative of
genuine interest is a partial answer to the problems of
observed power, but brings back the arbitrariness issue.
And it still depends on study-peculiar features (such as the
observed baseline rate and exposure allocation ratio or prev-
alence) that would unlikely apply to a different study popu-
lation. In fact, it could be advantageous to alter these
features for future studies, as power can be sensitive to design
choices like allocation ratios (or case-control ratios in case-
control studies), which can be improved relative to past
studies.

In sum, use of power in data analysis and interpretation
(as opposed to research proposals) is more prone to grave
misinterpretation than are other statistics. Chief among
them is the mistake that ‘‘high power’’ in the face of non-
significance means the null is better supported than the
alternative, a mistake still exploited in unpublished reports
even if no longer common in epidemiologic articles. Thus,
contrary to some articles (10) but in agreement with many
others (2–9) I argue that power analysis is only useful in dis-
cussing sample size requirements of further studies; if there
are specific alternatives of interest in an analysis, the P value
for those alternatives should be given in place of power. This
means, in particular, that we need to accustom ourselves and
students to concepts (such as power and smallest detectable
effect) that can be detrimental to inference from existing
data even if they are useful for study planning.

The problem of ‘‘underpowered studies’’ (10, 23) that
post hoc power is supposed to address is an artifact of
focusing on whether p ! a (fixed-level testing) in indi-
vidual studies. A study can contribute useful data no matter
how small and underpowered it is, as long as it is interpreted
with proper accounting for its final imprecision. Once its
data are in, ‘‘underpowered’’ needs to be replaced by its
post-trial analog, imprecisionda problem immediately
evident and addressed when using confidence intervals
(4–9, 24). Unlike p values and power, those intervals also
supply the minimum information needed to combine indi-
vidual study results in a meta-analysis, which is the most
direct way of addressing imprecision.
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APPENDIX.

Statistics for Table 1 were computed from the usual normal
approximation to the log risk-ratio estimator b̂ (the Wald
method), where b is the log risk-ratio parameter ln(RR)
(8,Ch. 14). Suppose the sample (observed) log risk ratio is
b and the estimated asymptotic standard deviation of b̂ is
s. Let F(z) is the standard cumulative normal distribution
(area below z). Then F(�z) Z 1�F(z) is its complement
and the following approximations are useful for tables in
which all counts exceed 4:

1) The 95% confidence limits for RR are exp(bH1.96s).
2) The one-sided P values for RR < eb and RR > eb are

F(�(b�b)/s) and F((b�b)/s).
3) The two-sided P value for RR Z eb is 2F(�jb�bj/s),

twice the minimum of the 1-sided P values.
4) The rejection rates of the one-sided 0.025-level tests of

RR < 1 and RR > 1 given RR Z eb are F(b/s�1.96)
and F(�b/s � 1.96).

5) The power of the two-sided 0.05-level test of RR Z 1
given RR Z eb is the sum of the one-sided 0.025-level
rejection rates, F(b/s � 1.96) þ F(�b/s � 1.96).

6) The likelihood ratio for RR2 Z exp(b2) relative to
RR1 Z exp(b1) is exp(�[(b2 � b)2 � (b1 � b)2]/2s2).

Statistics for Table 1 were computed using b Z ln(1.5)
and sZ (1/48þ 1/32� 2/1000)‘ in these formulas. Because
of the large case numbers, using the two-binomial likelihood
for the table instead of the normal approximation changes
the answers only slightly, for example, the approximate ratio
of likelihoods for RRZ 2 versus RRZ 1 is 2.3, whereas the
exact ratio is 2.4.
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