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Tour II Rejection Fallacies: Who’s
Exaggerating What?

Comedian Jackie Mason will be doing his shtick this evening in the ship’s theater:
a one-man show consisting of a repertoire of his “Greatest Hits”without a new or
updated joke in the mix. A sample:

If you want to eat nothing, eat nouvelle cuisine. Do you know what it
means? No food. The smaller the portion the more impressed people
are, so long as the food’s got a fancy French name, haute cuisine. An
empty plate with sauce!

You’ll get the humor only once you see and hear him (Mayo 2012b). As one
critic (Logan 2012) wrote, Mason’s jokes “offer a window to a different era,”
one whose caricatures and biases one can only hope we’ve moved beyond. It’s
one thing for Jackie Mason to reprise his greatest hits, another to reprise
statistical foibles and howlers which could leave us with radical changes to
science. Among the tribes we’ll be engaging: Large n, Jeffreys–Lindley, and
Spike and Smear.

HowCould a Group of Psychologists Be soWrong? I’ll carry a single tome
in our tour: Morrison and Henkel’s 1970 classic, The Significance Test
Controversy. Some abuses of the proper interpretation of significance tests
were deemed so surprising even back then that researchers in psychology
conducted studies to try to understand how this could be. Notably,
Rosenthal and Gaito (1963) discovered that statistical significance at a given
level was often fallaciously taken as evidence of a greater discrepancy from the
null hypothesis the larger the sample size n. In fact, it is indicative of less of a
discrepancy from the null than if it resulted from a smaller sample size.

What is shocking is that these psychologists indicated substantially greater confidence
or belief in results associated with the larger sample size for the same p values.
According to the theory, especially as this has been amplified by Neyman and
Pearson (1933), the probability of rejecting the null hypothesis for any given
deviation from null and p values increases as a function of the number of
observations. The rejection of the null hypothesis when the number of cases is small
speaks for a more dramatic effect in the population . . . The question is, how could a
group of psychologists be so wrong? (Bakan 1970, p. 241)
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(Our convention is for “discrepancy” to refer to the parametric, not the
observed, difference. Their use of “deviation” from the null alludes to our
“discrepancy.”)

As statistician John Pratt notes, “the more powerful the test, the more a just
significant result favors the null hypothesis” (1961, p. 166). Yet we still often
hear: “The thesis implicit in the [N-P] approach, [is] that a hypothesis may be
rejected with increasing confidence or reasonableness as the power of the test
increases” (Howson and Urbach 1993, p. 209). In fact, the thesis implicit in the
N-P approach, as Bakan remarks, is the opposite! The fallacy is akin to making
mountains out of molehills according to severity (Section 3.2):

Mountains out of Molehills (MM) Fallacy (large n problem): The
fallacy of taking a rejection of H0, just at level P, with larger sample
size (higher power) as indicative of a greater discrepancy fromH0 than
with a smaller sample size.

Consider an analogy with two fire alarms: The first goes off with a sensor liable
to pick up on burnt toast; the second is so insensitive it doesn’t kick in until
your house is fully ablaze. You’re in another state, but you get a signal when the
alarm goes off. Which fire alarm indicates the greater extent of fire? Answer:
the second, less sensitive one. When the sample size increases it alters what
counts as a single sample. It is like increasing the sensitivity of your fire alarm. It
is true that a large enough sample size triggers the alarm with an observed
mean that is quite “close” to the null hypothesis. But, if the test rings the alarm
(i.e., rejectsH0) even for tiny discrepancies from the null value, then the alarm
is poor grounds for inferring larger discrepancies. Now this is an analogy, you
may poke holes in it. For instance, a test must have a large enough sample to
satisfy model assumptions. True, but our interpretive question can’t even get
started without taking the P-values as legitimate and not spurious.

4.3 Significant Results with Overly Sensitive Tests: Large
n Problem

“[W]ith a large sample size virtually every null hypothesis is rejected, while
with a small sample size, virtually no null hypothesis is rejected. And we
generally have very accurate estimates of the sample size available without
having to use significance testing at all!” (Kadane 2011, p. 438).

P-values are sensitive to sample size, but to see this as a problem is to forget
what significance tests are for. We want consistent tests, so that as n increases
the probability of discerning any discrepancy from the null (i.e., the power)
increases. The fact that the test would eventually uncover any discrepancy
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there may be, regardless of how small, doesn’t mean there always is such a
discrepancy, by the way. (Another little confusion repeated in the form of “all
null hypotheses are false.”) Let’s focus on the example of Normal testing, T+
with H0: μ ≤ 0 vs. H1: µ > 0 letting σ = 1. It’s precisely to bring out the effect of
sample size that many prefer to write the statistic as

dðXÞ ¼ √nðX � 0Þ=σ
rather than

dðXÞ ¼ ðX � 0Þ=σX ;
where σX abbreviates (σ/√n).

T+ rejects H0 (at the 0.025 level) iff the sample mean X ≥ 0þ 1:96 σ=√n
� �

.
As n increases, a single (σ/√n) unit decreases. Thus the value of X required to
reach significance decreases as n increases.

The test’s goal is to distinguish observed effects due to ordinary
expected variability under H0 with those that cannot be readily explained
by mere noise. If the inter-ocular test will do, you don’t need statistics. As
the sample size increases, the ordinary expected variability decreases. The
severe tester takes account of the sample size in interpreting the discre-
pancy indicated. The test is like a thermostat, a fire alarm, or the mesh
size in a fishing net. You choose the sensitivity, and it does what you told
it to do.

Keep in mind that the hypotheses entertained are not point values, but
discrepancies. Informally, for a severe tester, each corresponds to an assertion
of form: there’s evidence of a discrepancy at least this large, but there’s poor
evidence it’s as large as thus and so. Let’s compare statistically significant
results at the same level but with different sample sizes.

Consider the 2-standard deviation cut-off for n = 25, 100, 400 in test T+, σ =
1 (Figure 4.1).

Let x0:025 abbreviate the sample mean that is just statistically significant
at the 0.025 level in each test. With n ¼ 25; x:025 ¼ 2ð1=5Þ; with
n ¼ 100; x0:025 ¼ 2ð1=10Þ; with n ¼ 400; x0:025 ¼ 2ð1=20Þ. So the cut-offs
for rejection are 0.4, 0.2, and 0.1, respectively.

Again, alterations of the sample size change what counts as one unit. If you
treat identical values of ðX � μ0Þ=σ the same, ignoring √n, you will misinter-
pret your results. With large enough n, the cut-off for rejection can be so
close to the null value as to lead some accounts to regard it as evidence for the
null. This is the Jeffreys–Lindley paradox that we’ll be visiting this afternoon
(Section 4.4).
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Exhibit (v): Responding to a Familiar Chestnut

Did you hear the one about the significance tester who rejectedH0 in favor of
H1 even though the result makes H0 more likely than H1?

I follow the treatment in Elliott Sober (2008, p. 56), who is echoing Howson
and Urbach (1993, pp. 208–9), who are echoing Lindley (1957). The only
difference is that I will allude to a variant on test T+: H0: μ = 0 vs. H1: μ > 0
with σ = 1. “Another odd property of significance tests,” says Sober, “concerns
the way in which they are sensitive to sample size.” Suppose you are applying
test T+ with null H0: μ = 0. If your sample size is n = 25, and you choose α =
0.025, you will reject H0 whenever x ≥ 0:4. If you examine n = 100, and choose
the same value for α, you will rejectH0 whenever x ≥ 0:2. And if you examine n
= 400, again with α = 0.025, you will rejectH0 whenever x ≥ 0:1. “As sample size
increases” the sample mean x must be closer and closer to 0 for you not to
reject H0. “This may not seem strange until you add the following detail.
Suppose the alternative to H0 is the hypothesis” H1: μ = 0.24. “The Law of
Likelihood now entails that observing” x < 0:12 favors H0 over H1, so in
particular x ¼ 0:1 favors H0 over H1 (Section 1.4).

Your reply: Hold it right at “add the following detail.” You’re observing that
the significance test disagrees with a Law of Likelihood appraisal to a point vs.
point test: H0: µ = 0 vs. H1: µ = 0.24. We require the null and alternative
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Figure 4.1 X̅ ~ N (μ, σ2/n) for n = 25, 100, 400.
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hypotheses to exhaust the space of parameters, and these don’t. Nor are our
inferences to points, but rather to inequalities about discrepancies. That said,
we’re prepared to consider your example, and make short work of it. We’re
testing H0: μ ≤ 0 vs. H1: μ > 0 (one could equally view it as testing H0: µ = 0 vs.
H1: µ > 0). The outcome x ¼ 0:1, while indicating some positive discrepancy
from 0, offers bad evidence and an insevere test for inferring μ as great as 0.24.
Since x ¼ 0:1 rejects H0, we say the result accords with H1. The severity
associated with inference µ ≥ 0.24 asks: what’s the probability of observing
X ≤ 0:1 – i.e., a result more discordant with H1 assuming µ = 0.24.

SEV(µ ≥ 0.24) with x ¼ 0:1 and n = 400 is computed as PrðX < 0.1; µ = 0.24).
Standardizing X yields Z = √400 (0.1 − 0.24)/1 = 20(−0.14) = −2.8. So SEV(µ ≥
0.24) = 0.003! Were µ as large as 0.24, we’d have observed a larger observed
mean than we did with 0.997 probability! It’s terrible evidence forH1: µ = 0.24.

This is redolent of the Binomial example in discussing Royall (Section 1.4). To
underscore the difference between the Likelihoodist’s comparative appraisal and
the significance tester, you might go further. Consider an alternative that the
Likelihoodist takes as favoredoverH0: µ = 0 with x ¼ 0:1, namely, themaximum
likely alternative H1: µ = 0.1. This is one of our key benchmarks for a
discrepancy that’s poorly indicated. To the Likelihoodist, inferring that H1:
µ = 0.1 “is favored” over H0: µ = 0 makes sense, whereas to infer a discrepancy
of 0.1 from H0 is highly unwarranted for a significance tester.1 Our aims are
very different.

We can grant this: startingwith any value for x, however close to 0, there’s an n
such that x is statistically significantly greater than 0 at a chosen level. If one
understands the test’s intended task, this is precisely what is wanted. How large
would n need to be so that 0.02 is statistically significant at the 0.025 level (still
retaining σ = l)?

Answer: Setting 0.02 = 2(1/√n) and solving for n yields n = 10,000.2

Statistics won’t tell you what magnitudes are of relevance to you. Nomatter, we
can critique results and purported inferences.

1 SEV(µ ≥ 0.1) with x = 0.1 and n = 400 is computed by considering Pr(X < 0.1; µ = 0.1).
Standardizing X yields z = √400 (0.1 − 0.1)/1 = 0. So SEV(µ ≥ 0.1) = 0.5!

2 Let’s use this to illustrate theMM fallacy: Compare (i) n = 100 and (ii) n = 10,000 in the same test
T+. With n = 100, 1SE = 0.1, with n = 10,000, 1SE = 0.01. The just 0.025 significant outcomes in
the two tests are (i) x = 0.2 and (ii) x = 0.02. Consider the 0.93 lower confidence bound for each.
Subtracting 1.5 SE from the outcome yields μ > 0.5(1/√n): (i) for n = 100, the inferred 0.93 lower
estimate is. μ > 0.5(1/5) = 0.05, (ii) for n = 10,000, the inferred 0.93 lower estimate is μ > 0.5(1/
100) = 0.005. So a difference that is just statistically significant at the same level, 0.025, permits
inferring μ > 0.05 when n = 25, but only µ > 0.005 when n = 10,000 Section 3.7.
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Exhibit (vi): Reforming the Reformers on Confidence Intervals. You will
be right to wonder why some of the same tribes who raise a ruckus over P-
values – to the extent, in some cases, of calling for a “test ban” – are cheerlead-
ing for confidence intervals (CIs), given there is a clear duality between the two
(Section 3.7). What they’re really objecting to is a dichotomous use of sig-
nificance tests where the report is “significant” or not at a predesignated
significance level. I completely agree with this objection, and reject the dichot-
omous use of tests (which isn’t to say there are no contexts where an “up/
down” indication is apt). We should reject Unitarianism where a single
method with a single interpretation must be chosen. Ironically, some of the
most outspoken CI leaders use them in the dichotomous fashion (rightly)
deplored when it comes to testing.

Geoffrey Cumming, an acknowledged tribal leader on CIs, tells us that
“One-sided CIs are analogous to one-tailed tests but, as usual, the estimation
approach is better” (2012, p. 109). Well, it might be better, but like hypothesis
testing, it calls for supplements and reinterpretations as begun in Section 3.7.

Our one-sided test T+ (H0: µ ≤ 0 vs. H1: µ > 0, and σ = 1) at α = 0.025 has as
its dual the one-sided (lower) 97.5% general confidence interval:
μ > X � 2ð1=√nÞ – rounding to 2 from 1.96. So you won’t have to flip back
pages, here’s a quick review of the notation we developed to avoid the common
slipperiness with confidence intervals. We abbreviate the generic lower limit of
a (1 − α) confidence interval as μ̂1�αðXÞ and the particular limit as μ̂1�α xð Þ.
The general estimating procedure is: Infer μ > μ̂1�αðXÞ. The particular esti-
mate is μ > μ̂1�α xð Þ. Letting α = 0.025 we have: μ > x � 2ð1=√nÞ. With
α = 0.05, we have μ > x � 1:65ð1=√nÞ.

Cumming’s interpretation of CIs and confidence levels points to their per-
formance-oriented construal: “In the long run 95% of one-sided CIs will include
the population mean . . .We can say we’re 95% confident our one-sided interval
includes the true value . . . meaning that for 5% of replications the [lower limit]
will exceed the true value” (Cumming 2012, p. 112). What does it mean to be
95% confident in the particular interval estimate for Cumming? “It means that
the values in the interval are plausible as true values for μ, and that values outside
the interval are relatively implausible – though not impossible” (ibid., p. 79). The
performance properties of the method rub off in a plausibility assessment of
some sort.

The test that’s dual to the CI would “accept” those parameter values within
the corresponding interval, and reject those outside, all at a single predesig-
nated confidence level 1 − α. Our main objection to this is it gives the
misleading idea that there’s evidence for each value in the interval, whereas,
in fact, the interval simply consists of values that aren’t rejectable, were one
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testing at the α level. Not being a rejectable value isn’t the same as having
evidence for that value. Some values are close to being rejectable, and we
should convey this. Standard CIs do not.

To focus on how CIs deal with distinguishing sample sizes, consider again
the three instances of test T+ with (i) n = 25, (ii) n = 100, and (iii) n = 400.
Imagine the observed mean x from each test just hits the significance level
0.025. That is, (i) x ¼ 0:4, (ii) x ¼ 0:2, and (iii) x ¼ 0:1. Form 0.975 confidence
interval estimates for each:

(i) for n = 25, the inferred estimate is μ > μ̂ 0:975, that is, μ > x � 2ð1=5Þ;
(ii) for n = 100, the inferred estimate is μ > μ̂ 0:975, that is, μ > x � 2ð1=10Þ;
(iii) for n = 400, the inferred estimate is μ > μ̂ 0:975, that is, μ > x � 2ð1=20Þ.
Substituting x in all cases, we get the same one-sided confidence interval:

µ > 0.

Cumming writes them as [0, infinity). How are the CIs distinguishing them?
They are not. The construal is dichotomous: in or out, plausible or not.

Would we really want to say “the values in the interval are plausible as
true values for µ”? Clearly not, since that includes values to infinity. I
don’t want to step too hard on the CI champion’s toes, since CIs are in
the frequentist, error statistical tribe. Yet, to avoid fallacies, this standard
use of CIs won’t suffice. Severity directs you to avoid taking your result as
indicating a discrepancy beyond what’s warranted. For an example, we
can show the same inference is poorly indicated with n = 400, while fairly
well indicated when n = 100. For a poorly indicated claim, take our
benchmark for severity of 0.5; for fairly well, 0.84:

For n ¼ 400; x0:025 ¼ 0:1; so μ > 0:1 is poorly indicated;

For n ¼ 100; x0:025 ¼ 0:2; and μ > 0:1 is fairly well indicated:

The reasoning based on severity is counterfactual: were µ less than or equal to
0.1, it is fairly probable, 0.84, that a smaller X would have occurred. This is not
part of the standard CI account, but enables the distinction we want. Another
move would be for a CI advocate to require we always compute a two-sided
interval. The upper 0.975 bound would reflect the greater sensitivity with
increasing sample sizes:

(i) n = 25: (0, 0.8], (ii) n = 100: (0, 0.4], (iii) n = 400: (0, 0.2].
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But we cannot just deny one-sided tests, nor does Cumming. In fact, he
encourages their use: “it’s unfortunate they are usually ignored” (2012, p. 113).
(He also says he is happy for people to decide afterwards whether to report it as
a one- or two-sided interval (ibid., p. 112), only doubling α, which I do not
mind.) Still needed is a justification for bringing in the upper limit when
applying a one-sided estimator, and severity supplies it. You should always
be interested in at least two benchmarks: discrepancies well warranted and
those terribly warranted. In test T+, our handy benchmark for the terrible is to
set the lower limit to x. The severity for ðμ > xÞ is 0:5. Two side notes:

First I grant it would be wrong to charge Cumming with treating all
parameter values within the confidence interval on par, because he does
suggest distinguishing them by their likelihoods (by how probable each ren-
ders the outcome). Take just the single 0.975 lower CI bound with n = 100 and
x ¼ 0:2. A µ value closer to the observed 0.2 has higher likelihood (in
the technical sense) than ones close to the 0.975 lower limit 0. For example,
µ = 0.15 is more likely than µ = 0.05. However, this moves away from CI
reasoning (toward likelihood comparisons). The claim µ > 0.05 has a higher
confidence level (0.93) than does µ > 0.15 (0.7)3 even though the point
hypothesis µ = 0.05 is less likely than µ = 0.15 (the latter is closer to x ¼ 0:2
than is the former). Each point in the lower CI corresponds to a different lower
bound, each associated with a different confidence level, and corresponding
severity assessment. That’s how to distinguish them.

Second there’s an equivocation, or at least a potential equivocation, in
Cumming’s assertion “that for [2.5%] of replications the [lower limit] will exceed
the true value” (Cumming 2012, p. 112 replacing 5% with 2.5%). This is not a
true claim if “lower limit” is replaced by a particular lower limit: μ̂ 0:025ðxÞ, it
holds only for the generic lower limit μ̂0:025ðXÞ. That is, we can’t say µ exceeds
zero 2.5% of the time, which would be to assign a probability of 0.975 to µ > 0.
Yet this misinterpretation of CIs is legion, as we’ll see in a historical battle
about fiducial intervals (Section 5.8).

4.4 Do P-Values Exaggerate the Evidence?

“Significance levels overstate the evidence against the null hypothesis,” is a line
you may often hear. Your first question is:

What do you mean by overstating the evidence against a hypothesis?

Several (honest) answers are possible. Here is one possibility:

3 Subtract 1.5 SE and 0.5 SE from x = 0.2, respectively.
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What I mean is that when I put a lump of prior weight π0 of 1/2 on a
point nullH0 (or a very small interval around it), the P-value is smaller
than my Bayesian posterior probability on H0.

More generally, the “P-values exaggerate” criticism typically boils down to
showing that if inference is appraised via one of the probabilisms – Bayesian
posteriors, Bayes factors, or likelihood ratios – the evidence against the null (or
against the null and in favor of some alternative) isn’t as big as 1 − P.

You might react by observing that: (a) P-values are not intended as poster-
iors inH0 (or Bayes ratios, likelihood ratios) but rather are used to determine if
there’s an indication of discrepancy from, or inconsistency with, H0. This
might only mean it’s worth getting more data to probe for a real effect. It’s
not a degree of belief or comparative strength of support to walk away with. (b)
Thus there’s no reason to suppose a P-value should match numbers computed
in very different accounts, that differ among themselves, and are measuring
entirely different things. Stephen Senn gives an analogy with “height and
stones”:

. . . [S]ome Bayesians in criticizing P-values seem to think that it is appropriate to use a
threshold for significance of 0.95 of the probability of the alternative hypothesis being
true. This makes nomore sense than, in moving from aminimum height standard (say)
for recruiting police officers to a minimum weight standard, declaring that since it was
previously 6 foot it must now be 6 stone. (Senn 2001b, p. 202)

To top off your rejoinder, youmight ask: (c)Why assume that “the” or even “a”
correct measure of evidence (relevant for scrutinizing the P-value) is one of the
probabilist ones?

All such retorts are valid, and we’ll want to explore how they play out here.
Yet, I want to push beyond them. Let’s be open to the possibility that evidential
measures from very different accounts can be used to scrutinize each other.

Getting Beyond “I’m Rubber and You’re Glue”. The danger in critiquing
statistical method X from the standpoint of the goals andmeasures of a distinct
school Y, is that of falling into begging the question. If the P-value is exagger-
ating evidence against a null, meaning it seems too small from the perspective
of school Y, then Y’s numbers are too big, or just irrelevant, from the perspec-
tive of school X.Whatever you say aboutme bounces off and sticks to you. This
is a genuine worry, but it’s not fatal. The goal of this journey is to identify
minimal theses about “bad evidence, no test (BENT)” that enable some degree
of scrutiny of any statistical inference account – at least on the meta-level. Why
assume all schools of statistical inference embrace the minimum severity
principle? I don’t, and they don’t. But by identifying when methods violate
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severity, we can pull back the veil on at least one source of disagreement behind
the battles.

Thus, in tackling this latest canard, let’s resist depicting the critics as
committing a gross blunder of confusing a P-value with a posterior probability
in a null. We resist, as well, merely denying we care about their measure of
support. I say we should look at exactly what the critics are on about. When we
do, we will have gleaned some short-cuts for grasping a plethora of critical
debates. We may even wind up with new respect for what a P-value, the least
popular girl in the class, really does.

To visit the core arguments, we travel to 1987 to papers by J. Berger and
Sellke, and Casella and R. Berger. These, in turn, are based on a handful of
older ones (Cox 1977, E, L, & S 1963, Pratt 1965), and current discussions
invariably revert back to them. Our struggles through quicksand of
Excursion 3, Tour II, are about to pay large dividends.

J. Berger and Sellke, and Casella and R. Berger. Berger and Sellke (1987a)
make out the conflict between P-values and Bayesian posteriors by considering
the two-sided test of the Normal mean, H0: μ = 0 vs. H1: μ ≠ 0. “Suppose that
X = (X1, . . ., Xn), where the Xi are IID N(μ, σ2), σ2 known” (p. 112). Then the
test statistic dðXÞ ¼ √n jX � μ0j=σ, and the P-value will be twice the P-value of
the corresponding one-sided test.

Starting with a lump of prior, generally 0.5, on the point hypothesisH0, they
find the posterior probability in H0 is larger than the P-value for a variety of
different priors on the alternative. However, the result depends entirely on how
the remaining 0.5 is allocated or smeared over the alternative (a move dubbed
spike and smear). Using what they call a Jeffreys-type prior, the 0.5 is spread
out over the alternative parameter values as if the parameter is itself distributed
N(µ0, σ). Now Harold Jeffreys recommends the lump prior only to capture
cases where a special value of a parameter is deemed plausible, for instance, the
GTR deflection effect λ = 1.75″, after about 1960. The rationale is to avoid a 0
prior on H0 and enable it to receive a reasonable posterior probability .

By subtitling their paper “The irreconcilability of P-values and evidence,”
Berger and Sellke imply that if P-values disagree with posterior assessments,
they can’t be measures of evidence at all. Casella and R. Berger (1987) retort
that “reconciling” is at hand, if you move away from the lump prior. So let’s
see how this unfolds. I assume throughout, as do the critics, that the P-values
are “audited,” so that neither selection effects nor violated model assump-
tions are in question at this stage. I see no other way to engage their
arguments.
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Table 4.1 gives the values of Pr(H0|x). We see that we would declare no
evidence against the null, and even evidence for it (to the degree indicated by
the posterior) whenever d(x) fails to reach a 2.5 or 3 standard error difference.
With n = 50, “one can classically ‘reject H0 at significance level p = 0.05,’
although Pr(H0|x) = 0.52 (which would actually indicate that the evidence
favors H0)” (J. Berger and Sellke 1987, p. 113).

If n = 1000, a result statistically significant at the 0.05 level results in the
posterior probability to μ = 0 going up from 0.5 (the lump prior) to 0.82! From
their Bayesian perspective, this suggests P-values are exaggerating evidence
againstH0. Error statistical testers, on the other hand, balk at the fact that using
the recommended priors allows statistically significant results to be interpreted
as no evidence against H0 – or even evidence for it. They point out that 0 is
excluded from the two-sided confidence interval at level 0.95. Although a
posterior probability doesn’t have an error probability attached, a tester can
evaluate the error probability credentials of these inferences. Here we’d be
concerned with a Type II error: failing to find evidence against the null, and
providing a fairly high posterior for it, when it’s false (Souvenir I).

Let’s use a less extreme example where we have some numbers handy: our
water-plant accident. We had σ = 10, n = 100 leading to the nice (σ/√n) value
of 1. Here it would be two-sided, to match their example: H0: μ = 150 vs. H1:
μ ≠ 150. Look at the second entry of the 100 column, the posterior when
zα = 1.96. With the Jeffreys prior, perhaps championed by the water coolant
company, J. Berger and Sellke assign a posterior of 0.6 to H0: μ = 150 degrees
when a mean temperature of 152 (151.96) degrees is observed – reporting
decent evidence the cooling mechanism is working just fine. How often would
this occur even if the actual underlying mean temperature is, say, 151 degrees?
With a two-sided test, cutting off 2 standard errors on either side, we’d
reject whenever either X ≥ 152 or X ≤ 148. The probability of the second
is negligible under µ = 151, so the probability we want is

Table 4.1 Pr(H0|x) for Jeffreys-type prior

n (sample size)

P one-sided zα 10 20 50 100 1000

0.05 1.645 0.47 0.56 0.65 0.72 0.89
0.025 1.960 0.37 0.42 0.52 0.60 0.82
0.005 2.576 0.14 0.16 0.22 0.27 0.53
0.0005 3.291 0.024 0.026 0.034 0.045 0.124

(From Table 1, J. Berger and T. Sellke (1987) p. 113 using the one-sided P-value)
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PrðX < 152; μ ¼ 151Þ ¼ 0:84 ðZ ¼ ð152� 151Þ ¼ 1Þ: The probability of
declaring evidence for 150 degrees (with posterior of 0.6 to H0) even if the
true increase is actually 151 degrees is around 0.84; 84% of the time they
erroneously fail to ring the alarm, and would boost their probability of μ = 150
from 0.5 to 0.6. Thus, from our minimal severity principle, the statistically
significant result can’t even be taken as evidence for compliance with 151
degrees, let alone as evidence for the null of 150 (Table 3.1).

Is this a problem for them? It depends what you think of that prior. The N-P
test, of course, does not use a prior, although, as noted earlier, one needn’t rule
out a frequentist prior on mean water temperature after an accident (Section
3.2). For now our goal is making out the criticism.

Jeffreys–Lindley “Paradox” or Bayes/Fisher Disagreement

But how, intuitively, does it happen that a statistically significant result corre-
sponds to a Bayes boost for H0? Go back to J. Berger and Sellke’s example of
Normal testing of H0: μ = 0 vs. H1: μ ≠ 0. Some sample mean x will be close
enough to 0 to increase the posterior for H0. By choosing a sufficiently large n,
even a statistically significant result can correspond to large posteriors on H0.
This is the Jeffreys–Lindley “paradox,” which some more aptly call the Bayes/
Fisher disagreement. Lindley’s famous result dealt with just this example, two-
sided Normal testing with known variance. With a lump given to the point
null, and the rest appropriately spread over the alternative, an n can be found
such that an α significant result corresponds to Pr(H0|x) = (1 − α)! We can see
by extending Table 4.1 to arbitrarily large n, we can get a posterior for the null
of 0.95, when the (two-sided) P-value is 0.05. Many say you should decrease
the required P-value for significance as n increases; and Cox and Hinkley
(1974, p. 397) provide formulas to achieve this and avoid the mismatch.
There’s nothing in N-P or Fisherian theory to oppose this. I won’t do that
here, as I want to make out the criticism. We need only ensure that the
interpretation takes account of the (obvious) fact that, with a fixed P-value
and increasing n, the test is more and more sensitive to smaller and smaller
discrepancies. Using a smaller plate at the French restaurant may make the
portion appear bigger, but, Jackie Mason notwithstanding, knowing the size of
the plate, I can see there’s not much there.

Why assign the lump of ½ as prior to the point null? “The choice of π0 = 1/2
has obvious intuitive appeal in scientific investigations as being ‘objective’” say
J. Berger and Sellke (1987, p. 115). But is it? One starts by making H0 and H1

equally probable, then the 0.5 accorded to H1 is spread out over all the values
in H1: “The net result is that all values of [μ] are far from being equally likely”
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(Senn 2015a). Any small group of μ values in H1 gets a tiny prior. David Cox
describes how it happens:

. . . if a sample say at about the 5% level of significance is achieved, then eitherH0 is true
or some alternative in a band of order 1/√n; the latter possibility has, as n → ∞, prior
probability of order 1/√n and hence at a fixed level of significance the posterior
probabilities shift in favour of H0 as n increases. (Cox 1977, p. 59)

What justifies the lump prior of 0.5?

A Dialogue at the Water Plant Accident

EPA REP: The mean temperature of the water was found statistically signifi-
cantly higher than 150 degrees at the 0.025 level.

SPIKED PRIOR REP: This even strengthens my belief the water temperature’s no
different from 150. If I update the prior of 0.5 that I give to the null hypothesis,
my posterior for H0 is still 0.6; it’s not 0.025 or 0.05, that’s for sure.

EPA REP: Why do you assign such a high prior probability to H0?
SPIKED PRIOR REP: If I gaveH0 a value lower than 0.5, then, if there’s evidence

to reject H0, at most I would be claiming an improbable hypothesis has
become more improbable.
[W]ho, after all, would be convinced by the statement ‘I conducted a Bayesian

test ofH0, assigning prior probability 0.1 toH0, andmy conclusion is thatH0 has
posterior probability 0.05 and should be rejected?’ (J. Berger and Sellke 1987,
p. 115).

This quote from J. Berger and Sellke is peculiar. They go on to add: “We
emphasize this obvious point because some react to the Bayesian–classical
conflict by attempting to argue that [prior] π0 should be made small in the
Bayesian analysis so as to force agreement” (ibid.). We should not force
agreement. But it’s scarcely an obvious justification for a lump of prior on
the nullH0 – one which results in a low capability to detect discrepancies – that
it ensures, if they do rejectH0, there will be ameaningful drop in its probability.
Let’s listen to the pushback from Casella and R. Berger (1987a), the Berger
being Roger now (I use initials to distinguish them).

The Cult of the Holy Spike and Slab. Casella and R. Berger (1987a) charge
that the problem is not P-values but the high prior, and that “concentratingmass
on the point null hypothesis is biasing the prior in favor of H0 as much as
possible” (p. 111) whether in one- or two-sided tests. According to them:

The testing of a point null hypothesis is one of the most misused statistical
procedures. In particular, in the location parameter problem, the point null

Tour II: Rejection Fallacies: Who’s Exaggerating What? 251



C:/ITOOLS/WMS/CUP-NEW/14082594/WORKINGFOLDER/MAYOS/9781107054134C09.3D 252 [239–266] 30.7.2018
9:52AM

hypothesis is more the mathematical convenience than the statistical method of
choice. (ibid., p. 106)

Most of the time “there is a direction of interest in many experiments, and
saddling an experimenter with a two-sided test would not be appropriate”
(ibid.). The “cult of the holy spike” is an expression I owe to Sander Greenland
(personal communication).

By contrast, we can reconcile P-values and posteriors in one-sided tests if we
use more diffuse priors. (e.g., Cox and Hinkley 1974, Jeffreys 1939/1961, Pratt
1965). In fact, Casella and Berger show that for sensible priors in that case, the
P-value is at least as big as the minimum value of the posterior probability on
the null, again contradicting claims that P-values exaggerate the evidence.4

J. Berger and Sellke (1987) adhere to the spikey priors, but following E, L, &
S (1963), they’re keen to show that P-values exaggerate evidence even in cases
less extreme than the Jeffreys posteriors in Table 4.1. Consider the likelihood
ratio of the null hypothesis over the hypothesis most generous to the alter-
native, they say. This is the point alternative with maximum likelihood,Hmax –

arrived at by setting μ ¼ x. Through their tunnel, it’s disturbing that even
using this likelihood ratio, the posterior for H0 is still larger than 0.05 – when
they give a 0.5 spike to both H0 and Hmax. Some recent authors see this as the
key to explain today’s lack of replication of significant results. Through the
testing tunnel, things look different (Section 4.5).

Why Blame Us Because You Can’t Agree on Your Posterior? Stephen
Senn argues that the reason for the wide range of variation of the posterior is
the fact that it depends radically on the choice of alternative to the null and its
prior.5 According to Senn, “. . . the reason that Bayesians can regard P-values
as overstating the evidence against the null is simply a reflection of the fact that
Bayesians can disagree sharply with each other” (Senn 2002, p. 2442). Senn

4 Casella and R. Berger (1987b) argue, “We would be surprised if most researchers would place
even a 10% prior probability of H0. We hope that the casual reader of Berger and Delampady
realizes that the big discrepancies between P-values P(H0|x) . . . are due to a large extent to the
large value of [the prior of 0.5 to H0] that was used.” The most common uses of a point null,
asserting the difference between means is 0, or the coefficient of a regression coefficient is 0,
merely describe a potentially interesting feature of the population, with no special prior believ-
ability. “Berger and Delampady admit . . ., P-values are reasonable measures of evidence when
there is no a priori concentration of belief about H0” (ibid., p. 345). Thus, “the very argument
that Berger and Delampady use to dismiss P-values can be turned around to argue for P-values”
(ibid., p. 346).

5 In defending spiked priors, Berger and Sellke move away from the importance of effect size.
“Precise hypotheses . . . ideally relate to, say, some precise theory being tested. Of primary
interest is whether the theory is right or wrong; the amount by which it is wrong may be of
interest in developing alternative theories, but the initial question of interest is that modeled by
the precise hypothesis test” (1987, p. 136).
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illustrates how “two Bayesians having the same prior probability that a hypoth-
esis is true and having seen the same data can come to radically different
conclusions because they differ regarding the alternative hypothesis” (Senn
2001b, p. 195). One of them views the problem as a one-sided test and gets a
posterior on the null that matches the P-value; a second chooses a Jeffreys-type
prior in a two-sided test, and winds up with a posterior to the null of 1 − p!

Here’s a recap of Senn’s example (ibid., p. 200): Two scientists A and
B are testing a new drug to establish its treatment effect, δ, where
positive values of δ are good. Scientist A has a vague prior whereas B,
while sharing the same distribution about the probability of positive
values of δ, is less pessimistic than A regarding the effect of the drug.
If it’s not useful, B believes it will have no effect. They “share the same
belief that the drug has a positive effect. Given that it has a positive
effect, they share the same belief regarding its effect. . . . They differ only
in belief as to how harmful it might be.” A clinical trial yields a
difference of 1.65 standard units, a one-sided P-value of 0.05. The result
is that A gives 1/20 posterior probability to H0: the drug does not have a
positive effect, while B gives a probability of 19/20 to H0. B is using the
two-sided test with a lump of prior on the null (H0: μ = 0 vs. H1: μ ≠ 0),
while A is using a one-sided test T+ (H0: μ ≤ 0 vs.H1: μ > 0). The contrast, Senn
observes, is that of Cox’s distinction between “precise and dividing hypothesis”
(Section 3.3). “[F]rom a common belief in the drug’s efficacy they have moved
in opposite directions” (ibid., pp. 200–201). Senn riffs on Jeffreys’ well-known
joke that we heard in Section 3.4:

It would require that a procedure is dismissed [by significance testers] because, when
combined with information which it doesn’t require and which may not exist, it
disagrees with a [Bayesian] procedure that disagrees with itself. (ibid., p. 195)

In other words, if Bayesians disagree with each other even when they’re
measuring the same thing – posterior probabilities – why be surprised that
disagreement is found between posteriors and P-values? The most common
argument behind the “P-values exaggerate evidence” appears not to hold
water. Yet it won’t be zapped quite so easily, and will reappear in different
forms.

Exhibit (vii): Contrasting Bayes Factors and Jeffreys–Lindley Paradox.
We’ve uncovered some interesting bones in our dig. Some lead to seductive
arguments purporting to absolve the latitude in assigning priors in Bayesian
tests. Take Wagenmakers and Grünwald (2006, p. 642): “Bayesian hypothesis
tests are often criticized because of their dependence on prior distributions
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. . . [yet] no matter what prior is used, the Bayesian test provides sub-
stantially less evidence against H0 than” P-values, in the examples we’ve
considered. Be careful in translating this. We’ve seen that what counts as
“less” evidence runs from seriously underestimating to overestimating
the discrepancy we are entitled to infer with severity. Begin with three
types of priors appealed to in some prominent criticisms revolving
around the Fisher – Jeffreys disagreement.

1. Jeffreys-type prior with the “spike and slab” in a two-sided test. Here, with
large enough n, a statistically significant result becomes evidence for the
null; the posterior to H0 exceeds the lump prior.

2. Likelihood ratio most generous to the alternative. Here, there’s a spike to
a point null, H0: θ = θ0 to be compared to the point alternative that’s
maximally likely θmax. Often, both H0 and Hmax are given 0.5 priors.

3. Matching. Instead of a spike prior on the null, it uses a smooth diffuse prior,
as in the “dividing” case. Here, the P-value “is an approximation to the
posterior probability that θ < 0” (Pratt 1965, p. 182).

In sync with our attention to high-energy particle physics (HEP) in Section 3.6,
consider an example that Aris Spanos (2013b) explores in relation to the
Jeffreys–Lindley paradox. The example is briefly noted in Stone (1997).

A large number (n = 527,135) of independent collisions that can be of
either type A or type B are used to test if the proportion of type A
collisions is exactly 0.2, as opposed to any other value. It’s modeled as n
Bernoulli trials testing H0: θ = 0.2 vs.H1: θ ≠ 0.2. The observed proportion of
type A collisions is scarcely greater than the point null of 0.2:

x ¼ k=n ¼ 0:20165233; where n ¼ 527;135; k ¼ 106;298:

The significance level against H0 is small (so there’s evidence against H0)
The test statistic dðXÞ ¼ ½√nðX � 0:2Þ=σ� ¼ 3, σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½θð1� θÞ�p

, which
under the null is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½0:2 0:8ð Þ�p ¼ 0:4. The significance level associated with
d(x0) in this two-sided test is

Pr(|d(X)| > |d(x0)|;H0) = 0.0027.

So the result x is highly significant, even though it’s scarcely different from the
point null.
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The Bayes factor in favor of H0 is high
H0 is given the spiked prior of 0.5, and the remaining 0.5 is spread equally

among the values in H1. I follow Spanos’ computations:6

Pr kð jH0Þ ¼ n
k

� �
0:2k 0:8ð Þn�k;

Pr kð jH1Þ ¼
ð0

1

n
k

� �
θk 1� θð Þn�kdθ ¼ 1= nþ 1ð Þ;

where n = 527,135 and k = 106,298.

The Bayes factor B01 ¼ Pr kð jH0Þ= Pr kð jH1Þ ¼ 0:000015394=0:000001897

¼ 8:115:

While the likelihood ofH0 in the numerator is tiny, the likelihood ofH1 is even
tinier. Since B01 in favor ofH0 is 8, which is greater than 1, the posterior forH0

goes up, even though the outcome is statistically significantly greater than the
null.

There’s no surprise once you consider the Bayesian question here: compare
the likelihood of a result scarcely different from 0.2 being produced by a universe
where θ = 0.2 – where this has been given a spiked prior of 0.5 underH0 – with
the likelihood of that result being produced by any θ in a small band of θ values,
which have been given a very low prior underH1. Clearly, θ = 0.2 is more likely,
and we have an example of the Jeffreys–Fisher disagreement.

Who should be afraid of this disagreement (to echo the title of Spanos’
paper)?Many tribes, including some Bayesians, think it only goes to cast doubt
on this particular Bayes factor. Compare it with proposal 2 in Exhibit (vii): the
Likelihood ratio most generous to the alternative: Lik(0.2)/Lik(θmax). We know
the maximally likely value for θ, θmax ¼ x:

x ¼ k=n ¼ 0:20165233 ¼ θmax;

Pr kð jHmaxÞ¼ n
k

� �
0:20165233k 1�0:20165233ð Þn�k ¼ 0:0013694656;

Likð0:2Þ ¼ 0:000015394; and LikðθmaxÞ ¼ 0:0013694656:

Now B01 is 0.01 and B10, Lik(θmax)/Lik(0.2) = 89.
Why should a result 89 times more likely under alternative θmax than under

θ = 0.2 be taken as strong evidence for θ = 0.2? It shouldn’t, according to some,
including Lindley’s own student, default Bayesian José Bernardo (2010).

6 The spiked prior drops out, so the result is the same as a uniform prior on the null and
alternative.
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Presumably, the Likelihoodist concurs. There are family feuds within and
between the diverse tribes of probabilisms.7

Greenland and Poole Given how often spiked priors arise in foundational
arguments, it’s worth noting that even Bayesians Edwards, Lindman, and
Savage (1963, p. 235), despite raising the “P-values exaggerate” argument,
aver that for Bayesian statisticians, “no procedure for testing a sharp null
hypothesis is likely to be appropriate unless the null hypothesis deserves
special initial credence.” Epidemiologists Sander Greenland and Charles
Poole, who claim not to identify with any one statistical tribe, but who often
lead critics of significance tests, say:

Our stand against spikes directly contradicts a good portion of the Bayesian
literature, where null spikes are used too freely to represent the belief that a
parameter ‘differs negligibly’ from the null. In many settings . . . even a tightly
concentrated probability near the null has no basis in genuine evidence. Many
scientists and statisticians exhibit quite a bit of irrational prejudice in favor of the
null . . . (2013, p. 77).

They angle to reconcile P-values and posteriors, and to this end they invoke the
matching result in # 3, Exhibit (vii). An uninformative prior, assigning equal
probability to all values of the parameter, allows the P-value to approximate the
posterior probability that θ < 0 in one-sided testing (θ ≤ 0 vs. θ > 0). In two-
sided testing, the posterior probability that θ is on the opposite side of 0 than
the observed is P/2. They proffer this as a way “to live with” P-values.
Commenting on them, Andrew Gelman (2013, p. 72) raises this objection:

[C]onsider what would happen if we routinely interpreted one-sided P values as
posterior probabilities. In that case, an experimental result that is 1 standard error
from zero – that is, exactly what one might expect from chance alone – would imply an
83% posterior probability that the true effect in the population has the same direction as
the observed pattern in the data at hand. It does not make sense to me to claim 83%
certainty – 5 to 1 odds [to H1] . . .

(The P-value is 0.16.) Rather than relying on non-informative priors, Gelman
prefers to use prior information that leans towards the null. This avoids as high
a posterior to H1 as when using the matching result.

Greenland and Poole respond that Gelman is overlooking the hazard of
“strong priors that are not well founded. . . . Whatever our prior opinion and

7 Bernardo shocked his mentor in announcing that the Lindley paradox is really an indictment of
the Bayesian computations: “Whether you call this a paradox or a disagreement, the fact that the
Bayes factor for the null may be arbitrarily large for sufficiently large n, however relatively
unlikely the data may be under H0 is, … deeply disturbing” (Bernardo 2010, p. 59).
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its foundation, we still need reference analyses with weakly informative priors
to alert us to how much our prior probabilities are driving our posterior
probabilities” (2013, p. 76). They rightly point out that, in some circles, giving
weight to the null can be the outgrowth of some ill-grounded metaphysics
about “simplicity.” Or it may be seen as an assumption akin to a presumption
of innocence in law. So the question turns on the appropriate prior on the null.

Look what has happened! The problem was simply to express “I’m not
impressed” with a result reaching a P-value of 0.16: Differences even larger
than 1 standard error are not so very infrequent – they occur 16% of the time –
even if there’s zero effect. So I’mnot convinced of the reality of the effect, based
on this result. P-values did their job, reflecting as they do the severity require-
ment. H1 has passed a lousy test. That’s that. No prior probability assignment
to H0 is needed. Problem solved.

But there’s a predilection for changing the problem (if you’re a probabilist).
Greenland and Poole feel they’re helping us to live with P-values without mis-
interpretation. By choosing the prior so that the P-valuematches the posterior on
H0, they supply us “with correct interpretations” (ibid., p. 77) where “correct
interpretations” are those where themisinterpretation (of a P-value as a posterior
in the null) is not amisinterpretation. To a severe tester, this results in completely
changing the problem from an assessment of how well tested the reality of the
effect is, with the given data, to what odds I would give in betting, or the like. We
land in the sameunchartedwaters as with other attempts tofix P-values, whenwe
could have stayed on the cruise ship, interpreting P-values as intended.

Souvenir Q: HaveWeDrifted From Testing Country? (Notes From an
Intermission)

Before continuing, let’s pull back for amoment, and take a coffee break at a place
called Spike and Smear. Souvenir Q records our notes. We’ve been exploring the
research program that appears to show, quite convincingly, that significance
levels exaggerate the evidence against a null hypothesis, based on evidential
assessments endorsed by various Bayesian and Likelihoodist accounts. We
suspended the impulse to deny it can make sense to use a rival inference school
to critique significance tests. We sought to explore if there’s something to the
cases they bring as ammunition to this conflict. The Bayesians say the disagree-
ment between their numbers and P-values is relevant for impugning P-values, so
we try to go along with them.

Reflect just on the first argument, pertaining to the case of two-sidedNormal
testingH0: μ = 0 vs.H0: μ ≠ 0, which was the most impressive, particularly with
n ≥ 50. It showed that a statistically significant difference from a test hypothesis
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at familiar levels, 0.05 or 0.025, can correspond to a result that a Bayesian takes
as evidence for H0. The prior for this case is the spike and smear, where the
smear will be of the sort leading to J. Berger and Sellke’s results, or similar. The
test procedure is to move from a statistically significant result at the 0.025 level,
say, and infer the posterior for H0.

Now our minimal requirement for data x to provide evidence for a claim H
is that

(S-1) H accords with (agrees with) x, and
(S-2) there’s a reasonable, preferably a high, probability that the
procedure would have produced disagreement with H, if in fact H
were false.

So let’s apply these severity requirements to the data taken as evidence for H0

here.
Consider (S-1). Is a result that is 1.96 or 2 standard errors away from 0 in

good accord with 0? Well, 0 is excluded from the corresponding 95% con-
fidence interval. That does not seem to be in accord with 0 at all. Still, they have
provided measures whereby x does accord with H0, the likelihood ratio or
posterior probability on H0. So, in keeping with the most useful and most
generous way to use severity, let’s grant (S-1) holds.

What about (S-2)? Has anything been done to probe the falsity of H0? Let’s
allow thatH0 is not a precise point, but some very small set of values around 0.
This is their example, and we’re trying to give it as much credibility as possible.
Did the falsity of H0 have a good chance of showing itself? The falsity of H0

here isH1: μ ≠ 0. What’s troubling is that we found the probability of failing to
pick up on population discrepancies as much as 1 standard error in excess of 0
is rather high (0.84) with n = 100. Larger sample sizes yield even less capability.
Nor are they merely announcing “no discrepancy from 0” in this case. They’re
finding evidence for 0!

So how did the Bayesian get the bump in posterior probability on the null? It
was based on a spiked prior of 0.5 to H0. All the other points get minuscule
priors having to share the remaining 0.5 probability. What was the warrant for
the 0.5 prior to H0? J. Berger and Sellke are quite upfront about it: if they
allowed the prior spike to be low, then a rejection of the null would merely be
showing an improbable hypothesis got more improbable. “[W]ho, after all,
would be convinced,” recall their asking: if “my conclusion is that H0 has
posterior probability 0.05 and should be rejected” since it previously had
probability, say 0.1 (1987, p. 115). A slight lowering of probability won’t cut
it. Moving from a low prior to a slightly higher one also lacks punch.
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This explains their high prior (at least 0.5) on H0, but is it evidence for it?
Clearly not, nor does it purport to be. We needn’t deny there are cases where a
theoretical parameter value has passed severely (we saw this in the case of GTR
in Excursion 3). But that’s not what’s happening here. Here they intend for the
0.5 prior to show, in general, that statistically significant results problematically
exaggerate evidence.8

A tester would be worried when the rationale for a spike is to avoid looking
foolish when rejecting with a small drop; she’d be worried too by a report:
“I don’t take observing amean temperature of 152 in your 100 water samples as
indicating it’s hotter than 150, because I give a whopping spike to our coolants
being in compliance.” That is why Casella and R. Berger describe J. Berger and
Sellke’s spike and smear as maximally biased toward the null (1987a, p. 111).
Don’t forget the powerful role played by the choice of how to smear the 0.5
over the alternative! Bayesians might reassure us that the high Bayes factor for
a point null doesn’t depend on the priors given to H0 and H1, when what they
mean is that it depends only on the priors given to discrepancies under H1. It
was the diffuse prior to the effect size that gave rise to the Jeffreys–Lindley
Paradox. It affords huge latitude in what gets supported.

We thought we were traveling in testing territory; now it seems we’ve drifted
off to a different place. It shouldn’t be easy to take data as evidence for a claim
when that claim is false; but here it is easy (the claim here being H0). How can
this be one of a handful of main ways to criticize significance tests as exagger-
ating evidence? Bring in a navigator from a Popperian testing tribe before we
all feel ourselves at sea:

Mere supporting instances are as a rule too cheap to be worth having . . . any support
capable of carrying weight can only rest upon ingenious tests, undertaken with the aim
of refuting our hypothesis, if it can be refuted. (Popper 1983, p. 130)

The high spike and smear tactic can’t be take as a basis from which to launch a
critique of significance tests because it fails rather glaringly a minimum
requirement for evidence, let alone a test. We met Bayesians who don’t
approve of these tests either, and I’ve heard it said that Bayesian testing is
still a work in progress (Bernardo). Yet a related strategy is at the heart of some
recommended statistical reforms.

8 In the special case, where there’s appreciable evidence for a special parameter, Senn argues that
Jeffreys only requiredH1’s posterior probability to be greater than 0.5. One has, so to speak, used
up the prior belief by using the spiked prior (Senn 2015a).
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4.5 Who’s Exaggerating? How to Evaluate Reforms Based
on Bayes Factor Standards

Edwards, Lindman, and Savage (E, L, & S) –who were perhaps first to raise this
criticism – say this:

Imagine all the density under the alternative hypothesis concentrated at x, the place
most favored by the data. . . .

Even the utmost generosity to the alternative hypothesis cannot make the evidence
in favor of it as strong as classical significance levels might suggest. (1963, p. 228)

The example is the Normal testing case of J. Berger and Sellke, but they
compare it to a one-tailed test of H0: μ = 0 vs. H1: μ = μ1 = μmax (entirely
sensibly in my view). We abbreviate H1 by Hmax. Here the likelihood ratio
Lik(μmax)/Lik(μ0) = exp[z2/2]); the inverse is Lik(μ0)/Lik(μmax) = exp[−z2/2]. I
think the former makes their case stronger, yet you will usually see the latter. (I
record their values in a Note9). What is μmax? It’s the observed mean x, the
place most “favored by the data.” In each case we consider x as the result that is
just statistically significant at the indicated P-value, or its standardized z form.

With a P-value of 0.025, Hmax is “only” 6.84 times as likely as the null. I put
quotes around “only” not because I think 6.84 is big; I’m never clear what’s to

Table 4.2 Upper Bounds on the Comparative Likelihood

P-value: one-sided zα Lik(μmax)/Lik(μ0)

0.05 1.65 3.87
0.025 1.96 6.84
0.01 2.33 15
0.005 2.58 28
0.0005 3.29 227

9 The entries for the inverse are useful. This is adapted from Berger and Sellke (1987) Table 3

P-value: one-sided zα Lik(μ0)/Lik(μmax)

0.05 1.65 0.258

0.025 1.96 0.146

0.01 2.33 0.067

0.005 2.58 0.036

0.0005 3.29 0.0044
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count as big until I have information about the associated error probabilities. If
you seek to ensureHmax: μ = μmax is 28 times as likely as isH0: μ = μ0, you need
to use a P-value ~0.005, with z value of 2.58, call it 2.6. Compare the corre-
sponding error probabilities. Were there 0 discrepancy from the null, a differ-
ence smaller than 1.96 would occur 97.5% of the time; one smaller than 2.6
would occur 99.5% of the time. In both cases, the 95% two-sided and 97.5%
confidence intervals entirely exclude 0. The two one-sided lower intervals are
μ > 0 and μ > ~0.64. Both outcomes are good indications of μ > 0: the difference
between the likelihood ratios 6.8 and 28 doesn’t register as very much when it
comes to indicating a positive discrepancy. Surely E, L, & S couldn’t expect
Bayes factors to match error probabilities when they are the ones who showed
how optional stopping can alter the latter and not the former (Section 1.5).

Valen Johnson (2013a,b) offers a way to bring the likelihood ratio more into
line with what counts as strong evidence, according to a Bayes factor. He
begins with a review of “Bayesian hypotheses tests.” “The posterior odds
between two hypotheses H1 and H0 can be expressed as”

PrðH1jxÞ
PrðH0jxÞ ¼ BF10 xð Þ � Pr H1ð Þ

Pr H0ð Þ :

Like classical statistical hypothesis tests, the tangible consequence of a Bayesian
hypothesis test is often the rejection of one hypothesis, say H0, in favor of the second,
say H1. In a Bayesian test, the null hypothesis is rejected if the posterior probability of
H1 exceeds a certain threshold. (Johnson 2013b, pp. 1720–1)

According to Johnson, Bayesians reject hypotheses based on a sufficiently high
posterior and “the alternative hypothesis is accepted if BF10 > k” (ibid., p. 1726,
k for his γ). A weaker stance might stop with the comparative report Lik(μmax)/
Lik(μ0). It’s good that he supplies a falsification rule.

Johnson views his method as showing how to specify an alternative
hypothesis – he calls it the “implicitly tested” alternative (ibid., p. 1739) –
when H0 is rejected. H0 and H1 are each given a 0.5 prior. Unlike N-P, the test
does not exhaust the parameter space, it’s just two points.

[D]efining a Bayes factor requires the specification of both a null hypothesis and an
alternative hypothesis, and in many circumstances there is no objective mechanism for
defining an alternative hypothesis. The definition of the alternative hypothesis therefore
involves an element of subjectivity and it is for this reason that scientists generally
eschew the Bayesian approach toward hypothesis testing. (Johnson 2013a, p. 19313)

He’s right that comparative inference, as with Bayes factors, leaves open a wide
latitude of appraisals by dint of the alternative chosen, and any associated priors.
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In his attempt to rein in that choice, Johnson offers an illuminatingway to relate
theBayes factor and the standard cut-offs for rejection, at least inUMPtests such as
this. (He even calls it a uniformly most powerful Bayesian test!) We focus on the
cases where we just reach statistical significance at various levels. Setting k as the
Bayes factor you want, you can obtain the corresponding cut-off for rejection by
computing √(2 log k): thismatches the zα corresponding to aN-P, UMPone-sided
test. The UMP test T+ is of the form: Reject H0 iff X ≥ xα; where
xα ¼ μ0 þ zα σ=√n, which is zασ/√n for the case μ0 = 0. Thus he gets (2013b,
p. 1730)

H1: μ1 ¼ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log k
n

:

r

Since this is the alternative under which the observed data, which we are taking
to be xα, have maximal probability, write it as Hmax and μ1 as μmax. The
computations are rather neat, see Note 10. (The last row of Table 4.3 gives
an equivalent form.) The reason the LR in favor of the (maximal) alternative
gets bigger and bigger is that Pr(x; H0) is getting smaller and smaller with
increasingly large x values.

Johnson’s approach is intended to “provide a new form of default, non
subjective Bayesian tests” (2013b, p. 1719), and he extends it to a number of
other cases as well. Given it has the same rejection region as a UMP error
statistical test, he suggests it “can be used to translate the results of classical
significance tests into Bayes factors and posteriormodel probabilities” (ibid.). To
bring them into line with the BF, however, you’ll need a smaller α level. Johnson
recommends levels more like 0.01 or 0.005. Is there anything lost in translation?

There’s no doubt that if you reach a smaller significance level in the same
test, the discrepancy you are entitled to infer is larger. You’ve made the hurdle

Table 4.3 V. Johnson’s implicit alternative analysis for T+:H0:μ ≤ 0 vs. H1:
μ > 0

P-value
one-sided zα Lik(μmax)/Lik(μ0) μmax Pr(H0|x) Pr(Hmax |x)

0.05 1.65 3.87 1.65σ√n 0.2 0.8
0.025 1.96 6.84 1.96σ√n 0.128 0.87
0.01 2.33 15 2.33σ√n 0.06 0.94
0.005 2.58 28 2.58σ√n 0.03 0.97
0.0005 3.29 227 3.3σ√n 0.004 0.996

√(2 log k) exp z2α
2

� �
zα σ√n 1/(1 + k) k/(1 + k)
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for rejection higher: any observed mean that makes it over must be larger. It
also means that more will fail to make it over the hurdle: the Type II error
probability increases. Using the 1.96 cut-off, a discrepancy of 2.46, call it 2.5,
will be detected 70% of the time – add 0.5 SE to the cut-off – (the Type II error
is 0.3) whereas using a 2.6 cut-off has less than 50% (0.46) chance of detecting a
2.5 discrepancy (Type II error of 0.54!). Which is a better cut-off for rejection?
The severe tester eschews rigid cut-offs. In setting up a test, she looks at the
worst cases she can live with; post-data she reports the discrepancies well or
poorly warranted at the attained levels. (Recall, discrepancy always refers to
parameter values.) Johnson proposes to make up for the loss of power by
increasing the sample size, but it’s not that simple.We know that as sample size
increases, the discrepancy indicated by results that reach a given level of
significance decreases. Still, you get a Bayes factor and a default posterior
probability that you didn’t have with ordinary significance tests. What’s not
to like?

We perform our two-part criticism, based on the minimal severity require-
ment. The procedure under the looking glass is: having obtained a statistically
significant result, say at the 0.005 level, reject H0 in favor of Hmax: μ = μmax.
Giving priors of 0.5 to bothH0 andHmax you can report the posteriors. Clearly,
(S-1) holds:Hmax accords with x – it’s equal to it. Our worry is with (S-2).H0 is
being rejected in favor of Hmax, but should we infer it? The severity associated
with inferring μ is as large as μmax is

Pr(Z < zα; μ = μmax) = 0.5.

This is our benchmark for poor evidence. So (S-2) doesn’t check out. You don’t
have to use severity, just ask: what confidence level would permit the inference
μ ≥ μmax (answer 0.5). Yet Johnson assigns Pr(Hmax|x) = 0.97. Hmax is com-
paratively more likely than H0 as x moves further from 0 – but that doesn’t
mean we’d want to infer there’s evidence for Hmax. If we add a column to
Table 4.1 for SEV(μ ≥ μmax) it would be 0.5 all the way down!

To have some numbers, in our example (H0: μ ≤ 0 vs.H1: μ > 0), σ = 1, n = 25,
and the 0.005 cut-off is 2.58σ/√n = 0.51, round to 0.5. When a significance
tester says the difference x ¼ 0:5 is statistically significantly greater than 0 at
the 0.005 level, she isn’t saying anything as strong as “there is fairly good
evidence that μ = 0.5.” Here it gets a posterior of 0.97. While the goal of the
reform was to tamp down on “overstated evidence,” it appears to do just the
opposite from a severe tester’s perspective.

How can I say it’s lousy if it’s the maximally likely estimate? Because there is
the variability of the estimator, and statistical inference must take this into
account. It’s true that the error statistician’s inference isn’t the point alternative
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these critics want us to consider (Hmax), but they’re the ones raising the
criticism of ostensive relevance to us, and we’re struggling in good faith to
see what there might be in it. Surely to infer μ = 0.5 is to infer μ > 0.4.
Our outcome of 0.5 is 0.5 standard error in excess of 0.4, resulting in
SEV(μ > 0.4) = 0.7. Still rather poor. Equivalently, it is to form the 0.7 lower
confidence limit (μ > 0.4).

Johnson (2013a, p. 19314) calls the 0.5 spikes equipoise, but what happened
to the parameter values in between H0 and Hmax? Do they get a prior of 0? To
be clear, it may be desirable or at least innocuous for a significance tester to
require smaller P-values. What is not desirable or innocuous is basing the
altered specification on a BF appraisal, if in fact it is an error statistical
justification you’re after. Defenders of the argument may say, they’re just
showing the upper bound of evidence that can accrue, even if we imagine
being as biased as possible against the null and for the alternative. But are they?
A fair assessment, say Casella and R. Berger, wouldn’t have the spike prior on
the null – yes, it’s still there. If you really want a match, why not use the
frequentist matching priors for this case? (Prior 3 in Exhibit vii) The spiked
prior still has a mismatch between BF and P-value.10 This is the topic of
megateam battles. (Benjamin et al. 2017 and Lakens et al. 2018).

Exhibit (viii): Whether P-values Exaggerate Depends on Philosophy.
When a group of authors holding rather different perspectives get together to
examine a position, the upshot can take them out of their usual comfort zones.
We need more of that. (See also the survey in Hurlbert and Lombardi 2009, and
Haig 2016.) Here’s an exhibit from Greenland et al. (2016). They greet each
member of a list of incorrect interpretations of P-values with “No!”, but then
make this exciting remark:

10 Computations

1. Suppose the outcome is just significant at the α level: x ¼ μ0 þ zασ=√n.
2. So the most likely alternative is Hmax : μ1 ¼ x ¼ μ0 þ zασ=√n.
3. The ratio of the maximum likely alternative Hmax to the likelihood of H0 is:

LikðxjHmaxÞ
LikðxjH0Þ ¼ 1

exp½�z2=2� ¼ exp½z2=2�:

This gives the Bayes factor: BF10. (BF01 would be exp[−z2/2].)

4. Set Lik(x| Hmax)/Lik(x|H0) = k.
5. So exp[z2/2] = k.

Since the natural log (ln) and exp are inverses:

log k = log(exp[z2/2]) = [z2/2];
2 log k = z2, so √(2 log k) = z.
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There are other interpretations of P values that are controversial, in that whether a
categorical ‘‘No!’’ is warranted depends on one’s philosophy of statistics and the precise
meaning given to the terms involved. The disputed claims deserve recognition if one
wishes to avoid such controversy. . . .

For example, it has been argued that P values overstate evidence against test hypoth-
eses, based on directly comparing P values against certain quantities (likelihood ratios
and Bayes factors) that play a central role as evidence measures in Bayesian analysis . . .
Nonetheless, many other statisticians do not accept these quantities as gold standards,
and instead point out that P values summarize crucial evidence needed to gauge the error
rates of decisions based on statistical tests (even though they are far from sufficient for
making those decisions). Thus, from this frequentist perspective, P values do not over-
state evidence and may even be considered as measuring one aspect of evidence . . . with
1 − P measuring evidence against the model used to compute the P value. (p. 342)

It’s erroneous to fault one statistical philosophy from the perspective of a
philosophy with a different and incompatible conception of evidence or
inference. The severity principle always evaluates a claim as against its denial
within the framework set. In N-P tests, the frame is within a model, and the
hypotheses exhaust the parameter space. Part of the problem may stem from
supposing N-P tests infer a point alternative, and then seeking that point.
Whether you agree with the error statistical form of inference, you can use the
severity principle to get beyond this particular statistics battle.

Souvenir R: The Severity Interpretation of Rejection (SIR)

In Tour II you have visited the tribes who lament that P-values are sensitive to
sample size (Section 4.3), and they exaggerate the evidence against a null
hypothesis (Sections 4.4, 4.5). We’ve seen that significance tests take into
account sample size in order to critique the discrepancies indicated objectively.
A researcher may choose to decrease the P-value as n increases, but there’s no
problem in understanding that the same P-value reached with a larger sample
size indicates fishing with a finer mesh. Surely we should not commit the
fallacy exposed over 50 years ago.

Here’s a summary of the severe tester’s interpretation (of a rejection) putting
it in terms that seem most clear:

SIR: The Severity Interpretation of a Rejection in test T+: (small
P-value)

(i): [Some discrepancy is indicated]: d(x0) is a good indication of µ > µ1
= µ0 + γ if there is a high probability of observing a less statistically
significant difference than d(x0) if µ = µ0 + γ.
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N-P and Fisher tests officially give the case with γ = 0. In that case, what does a
small P-value mean? It means the test very probably (1 − P) would have
produced a result more in accord with H0, were H0 an adequate description
of the data-generating process. So it indicates a discrepancy fromH0, especially
if I can bring it about fairly reliably. To avoid making mountains out of
molehills, it’s good to give a second claim about the discrepancies that are
not indicated:

(ii): [I’mnot that impressed]: d(x0) is a poor indication of µ > µ1 = µ0 + γ
if there is a high probability of an even more statistically significant
difference than d(x0) even if µ = µ0 + γ.

As for the exaggeration allegation, merely finding a single statistically sig-
nificant difference, even if audited, is indeed weak: it’s an indication of some
discrepancy from a null, a first step in a task of identifying a genuine effect. But,
a legitimate significance tester would never condone rejecting H0 in favor of
alternatives that correspond to a low severity or confidence level such as 0.5.
Stephen Senn sums it up: “Certainly there is much more to statistical analysis
than P-values but they should be left alone rather than being deformed . . . to
become second class Bayesian posterior probabilities” (Senn 2015a).
Reformers should not be deformers.

There is an urgency here. Not only do some reforms run afoul of the
minimal severity requirement, to suppose things are fixed by lowering P-values
ignores or downplays the main causes of non-replicability. According to
Johnson:

[I]t is important to note that this high rate of nonreproducibility is not the result of
scientific misconduct, publication bias, file drawer biases, or flawed statistical designs; it
is simply the consequence of using evidence thresholds that do not represent
sufficiently strong evidence in favor of hypothesized effects. (2013a, p. 19316)

This sanguine perspective sidesteps the worry about the key sources of spur-
ious statistical inferences: biasing selection effects and violated assumptions, at
all levels. (Fortunately, recent reforms admit this; Benjamin et al. 2017.)
Catching such misdemeanors requires auditing, the topic of Tours III and IV
of this Excursion.
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