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Excursion 5: Power and Severity 

Tour I: Power: Pre-data and Post-data 

A salutary effect of power analysis is that it draws one forcibly 
to consider the magnitude of effects.  In psychology, and 
especially in soft psychology, under the sway of the Fisherian 
scheme, there has been little consciousness of how big things 
are. (Cohen 1990, p. 1309)  
 

So how would you use power to consider the magnitude of effects 
were you drawn forcibly to do so? (p. 323)  
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Power is one of the most abused notions in all of statistics 
 
Power is always defined in terms of a fixed cut-off cα, computed 
under a value of the parameter under test 
 
These vary, there is really a power function.  
 
If someone speaks of the power of a test tout court, you cannot 
make sense of it, without qualification.   
 
The power of a test against μ’, is the probability it would lead to 
rejecting H0 when μ = μ’. (3.1) 

 
POW(T, μ’) = Pr(d(X) > cα; μ = μ’), or Pr(Test T rejects H0; μ = μ’). 
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Power measures the capability of a test to detect μ’–where the 
detection is in the form of producing a d > cα.  
 
Power is computed at a point μ = μ’, we use it to appraise claims of 
form μ > μ’ or μ < μ’. 
  
Power is an ingredient in N-P tests, but even Fisherians invoke 
power 
 
You won’t find it in the ASA P-value statement. 
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Two errors in Jacob Cohen’s definition in his (1969/1988) 
Statistical Power Analysis for the Behavioral Sciences (SIST p. 324)  
 
Keeping to the fixed cut-off cα is too coarse for the severe tester 
 
We will see why in doing power analysis today.  
 
The data-dependent version was in (3.3), but now we’ll focus on it. 
 
Power: POW(T, μ’) = Pr(d(X) > cα; μ = μ’) 
 
Achieved sensitivity” or “attained power”  
  Π(γ) = Pr(d(X) > d(x0); μ’) 
 
μ’ = µ0 + γ  
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N-P accorded three roles to power: first two are pre-data, for 
planning, comparing tests; the third for interpretation post-data.  
 
(I broke Tours I and II at the last minute)  
 
Oscar Kempthorne (being interviewed by J. Leroy Folks (1995)) 
said (SIST 325):  

“Well, a common thing said about [Fisher] was that he did not 
accept the idea of the power. But, of course, he must have. 
However, because Neyman had made such a point abut power, 
Fisher couldn’t bring himself to acknowledge it” (p. 331).  

  
It’s too performance oriented, Fisher claimed ~ 1955.  
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5.1 Power Howlers, Trade-offs and Benchmarks  

In the Mountains out of Molehills (MM) Fallacy (4.3), an α-level 
rejection with a larger sample size (higher power) is taken as 
evidence of a greater discrepancy from the null hypothesis than 
with a smaller sample size (in tests otherwise the same).  
 
Power can also be increased by computing it in relation to 
alternatives further and further from the null. 
  

Mountains out of Molehills (MM) Fallacy (second form) Test T+: 
The fallacy of taking a just significant difference at level α (i.e., 
d(x0) = dα) as a better indication of a discrepancy μ’ if the 
POW(μ’) is high than if POW(μ’) is low.  
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(SIST 326) 
Example. A test is practically guaranteed to reject H0, the “no 
improvement” null, if in fact H1 the drug cures practically 
everyone.  
It has high power to detect H1.  But you wouldn’t say that its 
rejecting H0 is evidence H1 cures everyone.  
 
To think otherwise is statistical affirming the consequent–the 
basis for the MM fallacy.  

 

Stephen Senn. In drug development, it is typical to set a high 
power of .8 or .9 to detect effects deemed of clinical relevance. Test 
T+: Reject H0 iff Z > zα (Z is the standard Normal variate). 
 
A simpler presentation to use the cut-off for rejection in terms of 
�̅�α: Reject H0 iff X̅ > �̅�α = (μ0 + zασ√n). 
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Abbreviate: the alternative against which test T+ has .8 power by 
μ.8

 .  
So POW(μ.8) = .8. 
 
Suppose μ.8

  is the clinically relevant difference.  
 
Can we say, upon rejecting the null hypothesis, that there’s 
evidence the treatment has a clinically relevant effect, i.e., μ ≥ μ.8?  
 
(bott SIST, 328) “This is a surprisingly widespread piece of 
nonsense which has even made its way into one book on drug 
industry trials” (ibid., p. 201).  
 
μ.8 > the cut-off for rejection, in particular, μ.8 = �̅�𝛼  + .85 𝜎�̅�  
(where 𝜎�̅� = σ/√n).  
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An easy alternative to remember: (SIST 329): μ.84 : 
 
The power of test T+ to detect an alternative that exceeds the cut-
off �̅�𝛼  by 1𝜎�̅�   =.84.   

 
The result of adding 1𝜎�̅�  to �̅�𝛼: That takes us to a value of μ against 
which the test has .84 power: μ.84 : 
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Trade-offs and Benchmarks 

Between H0 and �̅�𝜶 the power goes from α to .5.  
a. The power against H0 is α. We can use the power function to 

define the probability of a Type I error or the significance level of 
the test: 

POW(T+, μ0 ) = Pr(�̅� > �̅�𝛼; μ0), �̅�𝛼  = (μ0 + zα𝜎�̅�), 𝜎𝑋 ̅= [σ/√n]) 
 

The power at the null is: Pr(Z > zα;μ0) = α. 
 
It’s the low power against H0 that warrants taking a rejection as 
evidence that μ >μ0 .  
 
We infer an indication of discrepancy from H0 because a null world 
would probably have yielded a smaller difference than observed. 
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Example 1: Left Side: Sample size: 100; Observed mean difference 
(from null): 2; Alpha: 0.025 
 
Right side: “discrepancy value” is 0. Power is .025 (same as alpha) 
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b. The power of T+ for μ1= �̅�𝛼  is .5. Here, Z = 0, and Pr(Z > 0) = .5, so: 
POW(T+, μ1 = �̅�𝛼) = .5. 

 
discrepancy = 2,power is ~0.5  
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The power > .5 only for alternatives that exceed the cut-off �̅�𝛼 ,  
We get the shortcuts on SIST p. 328 
 
Remember �̅�𝛼  is (μ0 + zα𝜎�̅�).  
 
marcosjnez.shinyapps.io/Severity/   

 
  

https://t.co/pyEVTKfg1C
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Trade-offs Between α, the Type I Error Probability and Power 

We know for a given test, as the probability of a Type I error goes 
down the probability of a Type II error goes up (and power goes 
down).  

If someone said: As the power increases, the probability of a Type I 
error decreases, they’d be saying, as the Type II error decreases, 
the probability of a Type I error decreases.  

 

That’s the opposite of a trade-off!  
 
Many current reforms do just this!  After this class, you can 

readily be on the look-out, and refuse to be fooled. 
  

http://errorstatistics.com/2014/12/29/to-raise-the-power-of-a-test-is-to-lower-the-hurdle-for-rejecting-the-null-ziliac-and-mccloskey-3-years-on/
http://errorstatistics.com/2014/12/29/to-raise-the-power-of-a-test-is-to-lower-the-hurdle-for-rejecting-the-null-ziliac-and-mccloskey-3-years-on/
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In test T+ the range of possible values of �̅� and µ are the same, so 
we are able to set µ values this way, without confusing the 
parameter and sample spaces.  
 
Exhibit (i). Here I let n = 25 in Test T+ (α = .025)  
H0: μ = 0 vs. H1: μ ≥ 0, α = .025, n = 25, σ = 1.   
 
But keep to n = 100  
Say you must decrease the Type I error probability α to .001 but 
it’s impossible to get more samples. 
    
This requires the hurdle for rejection to be higher than in our 
original test.  
The new cut-off, for test T+ (α = .001), will be �̅�.001.  
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Old cut off was 2, new cut-off is 3, it must be 3𝜎�̅�  greater than 0 
rather than only 2𝜎�̅�: 
 
  μ.5 =  �̅�𝛼 , 
 
With α = .025, the smallest alternative the test has 50% power to 
detect is μ.5 = 2 
 
With α = .001, the smallest alternative the test has 50% power to 
detect is μ.5 = 3 
 
Decreasing the Type I error by moving the hurdle over to the right 
by 1𝜎�̅�  unit results in the alternative against which we have .5 
power µ.5 also moving over to the right by 1𝜎�̅�  .  
 
We see the trade-off very neatly, at least in one direction.  
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Ziliak and McCloskey get their hurdles in a twist SIST p. 330-1,  

Their slippery slides are quite illuminating.  
 

If the power of a test is low, say, .33, then the scientist will two 
times in three accept the null and mistakenly conclude that 
another hypothesis is false. If on the other hand the power of a 
test is high, say, .85 or higher, then the scientist can be 
reasonably confident that at minimum the null hypothesis (of, 
again, zero effect if that is the null chosen) is false and that 
therefore his rejection of it is highly probably correct (Ziliak 
and McCloskey 2013, p. 132-3). 
 

If the power of a test is high, then a rejection of the null is probably 
correct?   
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We follow our rule of generous interpretation (SIST 331)  
  

We may coin:  
 The high power = high hurdle (for rejection) fallacy. 
 
A powerful test does give the null hypothesis a harder time in the 
sense that it’s more probable that discrepancies are detected.  
That makes it easier for H1.  
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Negative results: d(x0) ≤ cα: 
(SIST 339) 
A classic fallacy is to construe no evidence against H0 as evidence 
of the correctness of H0.  
A canonical example was in the list of slogans opening this book:  

 
Power analysis uses the same reasoning as significance tests. 
Cohen: 

[F]or a given hypothesis test, one defines a numerical value i 
(or iota) for the [population] ES, where i is so small that it is 
appropriate in the context to consider it negligible (trivial, 
inconsequential).  Power (1 –β) is then set at a high value, so 
that β is relatively small.  When, additionally, α is specified, n 
can be found.   
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Now, if the research is performed with this n and it results in 
nonsignificance, it is proper to conclude that the population ES 
is no more than i, i.e., that it is negligible…(Cohen 1988, p. 16; 
α, β substituted for his a, b). 
 
Ordinary Power Analysis: If data x are not statistically 
significantly different from H0, and the power to detect 
discrepancy γ is high, then x indicates that the actual 
discrepancy is no greater than γ 
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Neyman Chides Carnap, Again (SIST 341) 

In his “The Problem of Inductive Inference” (1955) where he 
chides Carnap for ignoring the statistical model (2.7).  
 

“I am concerned with the term ‘degree of confirmation’ introduced by 

Carnap.  …We have seen that the application of the locally best one-sided 

test to the data…failed to reject the hypothesis [that the 26 observations 

come from a source in which the null hypothesis is true].  The question is: 

does this result ‘confirm’ the hypothesis that H0 is true of the particular 

data set]? ”. 

  

Ironically, Neyman (1957a,b) also criticizes Fisher’s move from a 
large P-value to inferring the null hypothesis as  

much too automatic [because]….large values of P may be 
obtained when the hypothesis tested is false to an important 
degree.  Thus, … it is advisable to investigate … what is the 
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probability (of error of the second kind) of obtaining a large 
value of P in cases when the [null is false... to a specified 
degree]. (1957a, p. 13)  

Should this calculation show that the probability of detecting 
an appreciable error in the hypothesis tested was large, say .95 
or greater, then and only then is the decision in favour of the 
hypothesis tested justifiable in the same sense as the decision 
against this hypothesis is justifiable when an appropriate test 
rejects it at a chosen level of significance. (1957b, pp.16-17)  
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“Locally best one-sided Test T 

A sample X = (X1, …,Xn) each Xi is Normal, N(,2), (NIID),  

assumed known; M the sample mean 

H0:  ≤ 0 against H1:  > 0.     

Test Statistic  d(X) = (M - 0)/x, 

 x =  /√𝑛  

 

Test fails to reject the null, d(x0) ≤  c.  

“The question is: does this result ‘confirm’ the hypothesis that H0 is true 

of the particular data set]? ” (Neyman). 

Carnap says yes… 
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Neyman: 

“….the attitude described is dangerous. 

…the chance of detecting the presence [of discrepancy γ  from the 

null], when only [this number] of observations are available, is 

extremely slim, even if [γ  is present].   

 

“One may be confident in the absence of that discrepancy only if the 

power to detect it were high”.  (power analysis) 

 
If Pr(d(X) > c;  = 0 + γ) is high  
 
d(X) ≤ c;  
 
infer: discrepancy < γ   



April 10, 2019 
 

 

 

25 

25 

 

Probem: Too Coarse 
 
Consider test T+ (α = .025): H0: μ = 0 vs. H1: μ ≥0, α = .025, n = 100, 
σ = 10, 𝜎�̅� = 1. Say the cut-off must be > �̅�.025 = 2.  
 
Consider an arbitrary inference μ < 1.  
 
We know POW(T+, μ = 1) = .16 (1𝜎�̅� is subtracted from 2).   
.16 is quite lousy power.  
 
It follows that no statistically insignificant result can warrant μ< 1 
for the power analyst. 
 
Suppose, �̅�0 = -1. This is 2𝜎�̅� lower than 1. That should be taken 
into account. 
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We do. SEV(T+, �̅�0 = -1, μ < 1) = .975. 
 
Z = (-1 -1)/1   =  -2 
SEV (μ < 1) = Pr (Z > z0; μ = 1) = .975 
 
It would be even larger for values of μ smaller than 1 
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(1)  P(d(X) > c;  = 0 + γ)   Power to detect  γ 

• Just missing the cut-off c is the worst case 

• It is more informative to look at the probability of getting a worse fit 

than you did 

(2)  P(d(X) > d(x0);  = 0 + γ)   “attained power” 

a measure of the severity (or degree of corroboration) for the inference 

 < 0 + γ   

Not the same as something called “retrospective power” or “ad hoc” 

power! (There  is identified with the observed mean– next time) 
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Mayo and Spanos (2006, p. 337): 

 

Test T: Normal testing: H0:  < 0 vs  H1:  > 0  
 is known 
 
 (SEV): If d(x) is not statistically significant, then test T+ 

passes µ < M0 + k n.5 with severity ( 1 – ),  

where P(d(X) > k) = . 

 

The connection with the upper confidence limit is obvious.  
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1.1. If one wants a post-data measure, one can write: 

 

SEV(  < M0  + γx) to abbreviate: 

 

The severity with which  

 

(  < M 0  + γ x).  

       

passes test T 

 

It’s computed Pr(d(X) > d(x0);  = 0 + γ)   

 

Severity has 3 terms: SEV(Test, outcome, inference)  
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One can consider a series of upper discrepancy bounds… 

SEV(  < M 0  + 0x) = .5       

SEV(  < M 0  + .5x) = .7      

SEV(  < M 0  + 1x) = .84   

SEV(  < M 0  + 1.5x) = .93   

SEV(  < M 0  + 1.96x) = .975   

 

This seems to relate to work by Min-ge Xie and others on confidence 

distributions. 

 

But aren’t I just using this as another way to say how probable each 

claim is? 
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No.  This would lead to inconsistencies  

 

Probability gives the wrong logic for “how well-tested”  

(or “corroborated”) a claim is  

 

(there may be a confusion of ordinary language use of “probability”: 

belief is very different from well-testedness) 

 

Note: low severity is not just a little bit of evidence, but bad evidence, 

no test (BENT) 
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The severity construal is different from what I call the 

Rubbing off construal:  The procedure is rarely wrong, therefore, the 

probability it is wrong in this case is low.   

Still too much of a performance criteria, too behavioristic 

The long-run reliability of the rule is a necessary but not a 

sufficient condition to infer H (with severity) 
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The reasoning instead is counterfactual:  

H:    < M0 + 1.96x 

  (i.e.,   < CIu ) 

 

H passes severely because were this inference false, and the true mean 

  >  CIu then, very probably, we would have observed a larger sample 

mean: 
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What enables substituting the observed value of the test 
statistic, d(x0), is the counterfactual reasoning of severity: 

 
If, with high probability, the test would have resulted in a 
larger observed difference (a smaller P-value) than it did, if the 
discrepancy was as large as γ, then there’s a good indication 
the discrepancy is no greater than γ, i.e., that μ ≤ μ0 + γ. 
 

That is, if the attained power of T+ against μ ≤ μ0 + γ (Π(γ)) 
is very high, the inference to μ < μ0 + γ is warranted with severity.  
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Power Analysis: If Pr(d(X) > cα; µ’) = high and the result is not 
significant, then it’s an indication or evidence that µ < µ’.  
 
Severity Analysis: If Pr(d(X) > d(x0); µ’) = high and the result is 
not significant, then it’s an indication or evidence that µ < µ.’  

 
If Π(γ) is high it’s an indication or evidence that µ < µ.’ 
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