Need to Reformulate Tests: P-values Don’t Give an Effect Size

Severity function: SEV(Test T, data \(x \), claim C)

• Tests are reformulated in terms of a discrepancy \(\gamma \) from \(H_0 \)

• Instead of a binary cut-off (significant or not) the particular outcome is used to infer discrepancies that are or are not warranted
An Example of SEV (3.2 SIST)

1-sided normal testing

$H_0: \mu \leq 150$ vs. $H_1: \mu > 150$ (Let $\sigma = 10$, $n = 100$)

Reject H_0 whenever $M \geq 2SE$: $M \geq 152$

M is the sample mean (significance level = .025)

$1SE = \frac{\sigma}{\sqrt{n}} = 1$

Let $M = 152$, so I reject H_0.
$H_0: \mu \leq 150$ vs. $H_1: \mu > 150$ (Let $\sigma = 10$, $n = 100$)

The usual test infers there’s an indication of some positive discrepancy from 150 because

$$Pr(M < 152: H_0) = .97$$

SEV($M = 152, \mu > 150$) = 0.97

Not very informative

Are we warranted in inferring $\mu > 153$ say?
• Recall the complaint of the Likelihoodist (p. 36)

• For them, inferring $H_1: \mu > 150$ means every value in the alternative is more likely than 150

• Our inferences are not to point values, but we block inferences to discrepancies beyond those warranted with severity.
consider \(\text{SEV}(\mu > 153) \)

\[M = 152, \text{ as before, } C: \mu > 153 \]

\[\Pr(\text{“a worse fit”; } C \text{ is false}) \]

\[\Pr(M \leq 152; \mu \leq 153) \]

Evaluate at \(\mu = 153 \), as the prob is greater for \(\mu < 153 \).

To get \(\Pr(M \leq 152: \mu = 153) \), standardize:

\[Z = \sqrt{100} \left(152 - 153 \right)/1 = -1 \]

\[\Pr(Z < -1) = 0.16 \text{ Terrible evidence} \]
Now consider $\text{SEV}(\mu > 150.5)$ (still with $M = 152$)

$Pr(A \text{ worse fit with } C; \text{ claim is false}) = .97$

$Pr(M < 152; \mu = 150.5)$

$Z = (152 - 150.5)/1 = 1.5$

$Pr(Z < 1.5) = .93$ Fairly good indication $\mu > 150.5$
Table 3.1 Reject in test T+: \(H_0: \mu \leq 150 \) vs. \(H_1: \mu > 150 \) with \(\bar{x} = 152 \)

<table>
<thead>
<tr>
<th>Claim</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu > \mu_1)</td>
<td>(\Pr(\bar{X} \leq 152; \mu = \mu_1))</td>
</tr>
<tr>
<td>(\mu > 149)</td>
<td>0.999</td>
</tr>
<tr>
<td>(\mu > 150)</td>
<td>0.97</td>
</tr>
<tr>
<td>(\mu > 151)</td>
<td>0.84</td>
</tr>
<tr>
<td>(\mu > 152)</td>
<td>0.5</td>
</tr>
<tr>
<td>(\mu > 153)</td>
<td>0.16</td>
</tr>
</tbody>
</table>

\(\mu > 150.5 \rightarrow .093 \)
FOR PRACTICE:
Now consider $SEV(\mu > 151)$ (still with $M = 152$)

$Pr \ (A \ worse \ fit \ with \ C; \ claim \ is \ false) = __$

$Pr(M < 152; \mu = 151)$

$Z = (152 - 151) / 1 = 1$

$Pr (Z < 1) = .84$
MORE PRACTICE:
Now consider $\text{SEV}(\mu > 152)$ (still with $M = 152$)

$Pr \ (A \text{ worse fit with } C; \text{ claim is false}) = _____

$Pr(M < 152; \mu = 152)$

$Z = 0$

$Pr \ (Z < 0) = .5$–important benchmark

Terrible evidence that $\mu > 152$

Table 3.2 has exs with $M = 153$.
(looks ahead) Compare \(n = 100 \) with \(n = 10,000 \)

\[H_0: \mu \leq 150 \text{ vs. } H_1: \mu > 150 \]
\(\text{Let } \sigma = 10, \ n = 10,000 \)

Reject \(H_0 \) whenever \(M \geq 2SE: \quad M \geq 150.2 \)

\(M \) is the sample mean (significance level = .025)

\[1SE = \frac{\sigma}{\sqrt{n}} = \frac{10}{\sqrt{10,000}} = .1 \]

Let \(M = 150.2 \), so I reject \(H_0 \).
Comparing \(n = 100 \) with \(n = 10,000 \)
Reject \(H_0 \) whenever \(M \geq 2SE: \quad M \geq 150.2 \)

\[
SEV_{10,000}(\mu > 150.5) = 0.001
\]

\[
Z = (150.2 - 150.5) / .1 = -.3 / .1 = -3
\]

\[
P(Z < -3) = .001
\]

Corresponding 95\% CI: [0, 150.4]

A .025 result is terrible indication \(\mu > 150.5 \)
When reached with \(n = 10,000 \)

\[
While \ SEV_{100}(\mu > 150.5) = 0.93
\]

\[\text{"} \]
Non-rejection. Let $M = 151$, the test does not reject H_0.

The standard formulation of N-P (as well as Fisherian) tests stops there.

We want to be alert to a fallacious interpretation of a “negative” result: inferring there’s no positive discrepancy from $\mu = 150$.

The data “accord with” H_0, but what if the test had little capacity to have alerted us to discrepancies from 150?

Condition (S-2) requires us to consider $\Pr(X > 151; 150)$, which is only .16.
Computation for $M = 151$

$Z = (151 - 150)/1 = 1$

$Pr(Z > 1) = .16$

$SEV(T, M = 151, C: \mu \leq 150) = \text{low (.16)}.$

- So there’s poor indication of H_0
Can they say $M = 151$ is a good indication that $\mu \leq 150.5$?

No, $SEV(T, M = 151, C: \mu \leq 150.5) = \sim .3.$

$[Z = 151 - 150.5 = .5]$

But $M = 151$ is a good indication that $\mu \leq 152$

$[Z = 151 - 152 = -1; \ Pr (Z > -1) = .84]$

$SEV(\mu \leq 152) = .84$

It’s an even better indication $\mu \leq 153$ (Table 3.3, p. 145)

$[Z = 151 - 153 = -2; \ Pr (Z > -2) = .97]$
Frequentist Evidential Principle: FEV

FEV (i). x is evidence against H_0 (i.e., evidence of a discrepancy from H_0), if and only if, were H_0 a correct description of the mechanism generating x, then, with high probability, this would have resulted in a less discordant result than is exemplified by x (Mayo and Cox 2006, p. 82; substituting x for y).

FEV (i). x is evidence against H_0 (i.e., evidence of discrepancy from H_0), if and only if the P-value $\Pr(d > d_0; H_0)$ is very low (equivalently, $\Pr(d < d_0; H_0) = 1 - P$ is very high).
Contraposing FEV(i) we get our minimal principle

\[FEV \ (ia) \ * \ \text{are poor evidence against } H_0 \ (\text{poor evidence of discrepancy from } H_0), \text{ if there’s a high probability the test would yield a more discordant result, if } H_0 \text{ is correct.} \]

Note the one-directional ‘if’ claim in FEV (1a) (i) is not the only way \(* \) can be BENT.
P-value “moderate”

*FEV(ii): A moderate *p* value is evidence of the absence of a discrepancy *γ* from *H₀*, only if there is a high probability the test would have given a worse fit with *H₀* (i.e., smaller *P*-value) were a discrepancy *γ* to exist.*

For a Fisherian like Cox, a test’s power only has relevance pre-data, they can measure “sensitivity”.

In the Neyman-Pearson theory of tests, the sensitivity of a test is assessed by the notion of *power*, defined as the probability of reaching a preset level of significance …for various alternative hypotheses. In the approach adopted here the assessment is via the distribution of the random variable *P*, again considered for various alternatives (Cox 2006, p. 25)
\(\Pi(\gamma) \): “sensitivity function”

Computing \(\Pi(\gamma) \) views the P-value as a statistic.
\[
\Pi(\gamma) = \Pr(P < p_{\text{obs}}; \mu_0 + \gamma).
\]

The alternative \(\mu_1 = \mu_0 + \gamma \).

Given that P-value inverts the distance, it is less confusing to write \(\Pi(\gamma) \)
\[
\Pi(\gamma) = \Pr(d > d_0; \mu_0 + \gamma).
\]

Compare to the power of a test:
\[
\text{POW}(\gamma) = \Pr(d > c_{\alpha}; \mu_0 + \gamma) \text{ the N-P cut-off } c_{\alpha}.
\]
FEV(ii) in terms of \(\Pi(\gamma) \)

P-value is modest (not small): Since the data accord with the null hypothesis, FEV directs us to examine the probability of observing a *result more discordant from* \(H_0 \) if \(\mu = \mu_0 + \gamma \):

If \(\Pi(\gamma) = \Pr(d > d_0; \mu_0 + \gamma) \) is very high, the data indicate that \(\mu < \mu_0 + \gamma \).

Here \(\Pi(\gamma) \) gives the severity with which the test has probed the discrepancy \(\gamma \).
FEV (ia) in terms of $\Pi(\gamma)$

If $\Pi(\gamma) = \Pr(d > d_0; \mu_0 + \gamma) =$ moderately high (greater than .3, .4, .5), then there’s poor grounds for inferring $\mu > \mu_0 + \gamma$.

This is equivalent to saying the SEV($\mu > \mu_0 + \gamma$) is poor.
FEV/SEV (for Excur 3 Tour III)

Test T+: Normal testing: $H_0: \mu \leq \mu_0$ vs. $H_1: \mu > \mu_0$

σ known

(FEV/SEV): If $d(x)$ is statistically significant (P-value very small), then test T+ passes $\mu > M_0 - k_\varepsilon \sigma/\sqrt{n}$ with severity $(1 - \varepsilon)$.

(FEV/SEV): If $d(x)$ is not statistically significant (P-value moderate), then test T+ passes $\mu < M_0 + k_\varepsilon \sigma/\sqrt{n}$ with severity $(1 - \varepsilon)$,

where $P(d(X) > k_\varepsilon) = \varepsilon$.
PRACTICE WITH P-VALUES

Let $M = 151$

$Z = (151 - 150)/1 = 1$

The P-value is $Pr(Z > 1) = .16$

$SEV (\mu > 150) = .84 = 1 - P$-value
PRACTICE WITH P-VALUES
Let M = 150.5

Z = (150.5 – 150)/1 = .5

The P-value is \(\Pr(Z > .5) = .3 \)

SEV \((\mu > 150) = .7 = 1 – \text{P-value} \)
PRACTICE WITH P-VALUES
Let $M = 150$

$Z = (150 - 150)/1 = 0$

The P-value is $\Pr(Z > 0) = .5$

$SEV (\mu > 150) = .5 = 1 - P\text{-value}$