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By E. S. PEARSON axp J. NEYMAN

Galton Laboratory, University College London and
Biometric Laboratory, Nencki Institute, Warsaw

I. THE NEED FOR DISTINGUISHING BETWEEN CRITERIA

Professor V.Romanovsky (1928) has contributed to a recent number of
Meiron an important paper entitled ‘On Criteria that two given Samples belong
to the same Normal Population”. The paper is divided into two parts; the first
concerns the cases where the samples are compared with respect to one variable
character only, while in the second it is supposed that measures on a number of
characters have been made. We propose to consider here certain aspects of the
first problem which is the more fundamental, although the development of
analogous tests in the second problem is of considerable interest and appears to
be novel.

The process of testing the hypothesis, H, that two observed samples, X, and
¥, have come from the same unknown normal population 7 consists (for Prof.
Romanovsky) (1) in supposing H to be true, and (2) deducing the frequency
distribution (determined by this hypothesis) in repeated random sampling, of
certain functions of the sample means and standard deviations, which Professor
Romanovsky calls the ““belonging coefficients” or fully “coefficients of samples
belonging to the same general population”. The problem of deducing the fre-
quency distribution of such coefficients is often a very difficult one and Professor
Romanovsky hassucceeded inreaching several new results, either expressing them
in the form of series or by giving the moment coefficients of their distributions.
This is an important achievement, but there lies at the very basis of the question
another problem, which he does not appear to have fully considered, that of
distinguishing between these coefficients or criteria and determining which is
the most appropriate one to use in any given case. We have discussed elsewhere
(Neyman & Pearson, 1928a, b; Neyman, 1929a) certain principles regarding the
testing of hypotheses, which we believe to be intuitively sound. They are not,
strictly speaking, mathematical results and may be rejected by those who do not
believe in them. But we think that any reader who will follow us in examining
Romanovsky’s results will be convinced that some logical principle must be.
adopted in choosing between the various criteria.

Suppose that the two samples %, and Z, have respectively

n, individuals with mean character Z, and standard deviation a,,
ny individuals with mean character Z, and standard deviation 3g.

* Presented at the meeting on 10 February 1930 by M, Cz, Bialobrzeski,
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g i iteria for testing the hypothex?is H,
Romanovsky considers four alternative cIl rmhe st L e

namely that %, and Z, are random samples from t

These are B —Ty | @
(@ —7)% . =72 g2\’
: 1%,-'-% A/(”'14-""1)

Z,—%; A/{”l”z("‘1+”2'2)}; 3) 0=j—§. 4)
= Tl tmdn | mtm 5
i iteria he gives the following res ts_: )
mtﬁzgg::‘;ﬁ::g s;:g-,‘t;:tion f;' «, in the form. of a series, which however
appears to be too complicated as it stands for practical P“fposzsi- ibatiogs
(6) The Normal Law as the limiting form of t‘he frequency dis nt’. ?fﬁ of u.
The proof is carried out by finding general expressions for the mom.en coef c§ex{ts
of u, and making use of the Tchebycheff-Markoff theorem regarding their limit-
ing values (Markoff, 1912, p. 266). In the case of smaller samples these mome.nt
expressions might be used to fit some system of non-normal curves to the dis-
tribution. S o =
(c) A new method is given of reaching the distribution of ¢, that originally
i . A. Fisher (1925).
g“;;l)l lfgleR diitﬁllasut:oé of 0) =s}/s? is given. This leaa.is to the same test as used
by Fisher for the comparison of two estimates of variance.* .

As was pointed out in our earlier paper, in testing hypotheses two co_nsl('iera-
tions must be kept in view, (1) we must be able to reduce the chance of re-]ectmg a
true hypothesis to as low a value as desired; (2) the test must be so .dewse.:d that
it will reject the hypothesis tested when it is likely to be false. In d.lscl%ssmg the
four criteria Romanovsky is thinking primarily of this first point, and in fact all
his tests provide complete control of this source of error. Suppose that ¢ be any
small positive number, that £ be any statistical character of both samples %,
and %,, and that ¢(£) represents the frequency distribution of £ deduced on the

hypothesis that both samples have been drawn at random from the same normal
population. Choose now two numbers £, and £,, such that

f: (e dE<e (5)

and accept the principle of rejecting the hypothesis H when, and when only,
the value of £, say &, obtained from the observed samples is such that

E<E <, (6)

As the chance of rejecting a true hypothesis H is the product of (1) the chance
of dealing with a true hypothesis, and (2) the chance of obtaining a £, satisfying

* Fisher (1930, §41) uses the transformation 2= log {Mg

and has given certain tables
of the z distribution. mi(na—1) a?}
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(6), calculated on the assumpt;
hypothesis (When we rejoct, (I,)n;;“i:hat H be true
less than ¢, that is as low g5 desiredmes where (|
From this point ¢ Mg
micht betho Point of view, provigeq that (6) is satisfied
g sen, and further any stagigtion) G e . £y £

e . character i

At inin clef;r When We examine the statistin] tests f::::l: ” eqwl{x ey
scxousne;se, i so}llne\‘viha,t vaguely defined, of what, we havemt:rlmu:; :;h? . 00:‘;
source of error, has determineq tj, - Beco
also the position of the o e particular characters £ chosen as criteria and

ltin . . . .
example, the first three char. ity o fhe${f) dimtribution. Yar
¢ considered by Romanovsky depend

. acters «, % and
upon the difference %y —%,;. The reasoning which underlies this chojes j
sumably as follows. If the hypothesis H were false, then probabl Gﬂ:’l% . Pf:;
the two samp}ed Ppopulations would differ, and tl;is is liprlml tg cae mesa
value of the difference z, —%,; therefore if this difference be la?; e it isusd:.: emge
to accept ltfh}o; hypqthesis. For this reason the numbers £ and g, are chosgn inu:
::izjxlil;esd li, }:;:l); different, to that indicated above, namely the hypothesis H
50< E], or £q< En (7)
and the sum of the two integrals

, the chance of rejecting a true
8) holds good) will be certainly

J‘: +J:m¢(§) dé<e. ®)

But clearly the tests with «,
population standard deviations
in one of which &, and s, are al

% and ¢ are not really sensitive to differences in

. We may for instance have two pairs of samples

: most equal, while in the second pair one is many

times as great as the other; and yet both may provide the same value of . That
is tosay, in certain cases the test would not distinguish what is otherwise obvious,
that the standard deviations of the sampled populations may in one case be the
same, but in the other can hardly be so. On the other hand the fourth criterion, @,
will distinguish differences between the population standard deviations, but is
quite insensitive to differences between their means.

It would not be difficult to give examples of pairs of samples which would lead
to contradictory conclusions about the hypothesis H when different tests are
applied, and in such cases which conclusion is to be drawn? That unfavourable
to the hypothesis? Not necessarily so, for given any two samples it is always
possible to choose a statistical character £, or simply the numbers £, and &, so
that the verdict based on such a £ test would be unfavourable to H.*

* Ne; 1929b) has illustrated this point in testing the composite hypothesis that a single
sample {:::nnvsith mla.n % and standard deviation & has come f;rt::n some normally distributed
population with mean a. Here we should ordinarily use ““Student’s” ¢ (or z) test, namely c:h:nl..sg
z=t/(n—1)=|z—al/s, refer to the appropriate tables and so find P,,;lr tll;e el:;: of obtaining
in random sampling & value of z 50 large or larger than that observed. i . g,hmr space
z is the cotangent of the angle yr between the vector rep g the ple and the diag

Ty =Ly= e =y}
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: ; felt the need of finding & logical basis for the
It is for this reason that we ha,veh :r. Owing to the fact that the control of the

choice of one test rather than anot : Pk
error involved in rejecting a true hypothesis can be obtained when any statistical

character of the two samples is used, we may choose this cha,rc.a.ct.er in s310¥1 a way
that it will minimise the danger of accepting the hypothesis when it is false.
Of course this word “danger” must be clearly defined. We have afs.ume.:d that
the danger of the hypothesis being false can be n.xea,sured by the hk&lllfood”
of that hypothesis.* The justification of this principle resf:s upon the cor.lsldem,_
tion of simple problems of testing hypotheses where an mt\‘ntlve verdict Iay
easily be reached. It appears that we are always inclined to re']ect a hypothesis H
in cases where there are possible alternative hypotheses which .make the prob-
ability of occurrence of the observed events (such as of drawing the samples
3, and X,) much greater than that determined by H. It was this idea that led
to that definition of the likelihood of a hypothesis.

II. APPLICATION OF THE METHOD OF LIKELIHOOD TO THE PROBLEM

Let us try to consider the problem of Professor Romanovsky from this point
of view, first making the conditions a little more precise. To commence with it is
necessary to fix the set, Q, of admissible hypotheses concerning the populations
from which =, and £, have been drawnt. The most general assumption would be
that these populations may be of any form whatsoever, normal or not normal.
The less general assumption which we shall adopt is that I, and 2, have come
from some normal populations m, and 7, having any values a; and a,, oy and o,
for their means and standard deviations. Then we wish to test the hypothesis H
(which we have termed a composite hypothesis) that the populations m; and ,
belong to the subset w of Q for which

8=, 01=0y ' 9)
that is to say, that 7, and 7, are identical.
The chance of drawing from populations m; and 7, two samples X, and 2y
with values of the variables

Ty gy ees®n s Ty Tmipts s Tty

P, is the integral of the normal spherical density field lying outside the hypercone with semi-
vertical angle .
If now we were to take as criterion not z, bus £, the cotangent of the angle between the sample
vector and the axis e
b WL P

the distribution of £ in sampling would still follow Student’s Iaw. But for & given sample the value
of Pg could be made to assume any value whatsoever lying between 0 and 1, by an appropriste

hoice of the directi ines ay, ay, ..., o, of the axis of ¥ N =
criterion could be found for the case of ,two s xis of the hypercone. A similar ‘‘nonsense
* The term “likelihood"” was introduced b i
o y R. A. Fisher (1922); ded
the definition (see Neyman & Pearson, 1928, PpP- 264—5).“ e iiarh
t The inology is that explained in the

d ref

of the preceding footnote.
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It is easy to show that

" the maxi
populations belonging to the get, Qxil:j)‘;)ti:ﬁ:hzic associated with a pair of

U=Ty,a,=7%,, T1=8,0y=3,,

and hence cQ max)= ( 1 )”' LA
) () e o
‘We must now find the maximum value of (' associ

longing to w. Thiswemay dob i
Y first not; i
(say), we can write (10) as o
Tty

1 —
O=—— —ap
(0_ :\/ (2”)) exp [ - {("’1 +n,) W}] hmvimg, (12)
where Z, and s, are the mean and standard deviat

7y +ny variables of the samples 3, and 2,
chance occurs when

ated with a population be-
=a;=a(say)and oy =0y =0

ion obtained by combining the
It now follows that the maximum

a==%, o=8§,

and C = 1 by

(wmax) (W(Z—")) e~ Aty fning (13)
The expression for the likelihood of the composite hypothesis H that X, and
2, have been randomly drawn from the same normal population is therefore

_Clomax) (8\™ (s5\™

= Gama™ o) o) 0
If this ratio be small, it means that whatsoever be the hypothetical population
7 from which we may supposs Z; and Z, have been drawn, the probability of
obtaining these samples from 7 is much smaller than the probability of getting
them from some two different normal populations. On the other hand, if the A5
of (14) is a number approaching unity, then there are certainly some normal
populations 7 such that the probability of drawing Z; and Z, from 7 is not so
very much less than that of drawing them from two different po‘pulatioPs.
Speaking roughly, in the first event there are no normal populations from which
both samples could easily have come, while in the }‘ewnd such populations do
exist. Ay is therefore the eriterion suggested for testing the hypothesis H.

It will be noted that

_meltmd, MMz (18)
=", ¥y Htngica
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and therefore if we w:-1=be - n {mn‘(m s 2)} 2
(g3 +1483) N+
and 0=28}/s3, (17)
we obtain p i h
"=("1+n-)*‘"'“"’ﬂ*"'<m+n.o)*"““"(‘*nTﬁz,Té) . (1

that is to say A5 can be expressed as a function of two of the four coefficients
given by Romanovsky. This is a point of considerable mterest,_because the tests
associated with ¢ and 6 (which are the “Student” and R. A. Fisher tests) are in
fact those suggested by measuring the likelihood not of the full hypothesis H,
but of certain modified hypotheses H, and Hy. We shall first proceed to consider
this point.

In all three cases we assume that 3, and 2, have come from some two normal
populations, but

(1) The hypothesis H, is that the samples have come from unknown normal
populations with the same variance, but with means having any values @, and a,
whatsoever. Here 6 is the appropriate criterion.

(2) While if it be assumed that the populations besides being normal have the
same variance, then the hypothesis H, is that the means in these populations are
the same. Here ¢ is the appropriate criterion.

The deduction of the #-test from the principle of likelihood has already been
discussed by us (Neyman & Pearson, 19284, Pp. 206-7). It was shown that, if
¢ is as defined in (16), then the likelihood of the hypothesis H, is

( 2 ) —Hny+ny)

={l4+—-
e +'n1+n,—2 (9]

2
and as “Student’ has shown, the frequency distribution of £ in repeated samples
Z, and Z, from a common normal population is

)= I'(3[ny+n,—1]) (1 e A =Hm+na—1)
im(ny +ny— 2} T3 n, +0,—2) " gy = 2)

Ag, hasits maximum value of unity whent=0orz = 7y, and decreases as £ + o0.
The chance of obtaining in sampling a value of A 1, less than that observed may
therefore be obtained from the probability integra'l of (20).

Let us examine the likelihood of hypothesis H,. Now Q is the set of all possible
pairs of normal populations with means ¢, and a,, and standard deviations o 1
and o, and C(Q max) has the value given in (11), But o is the subset of popula-

tions in which oy = o, while a and a, have any values, We must therefore choose
@y, @ and a common value of o, = ¢, = (say) as to maximise

o= (%)’“*"'exp [_ M&;ﬂ&ﬂ%@@ - a,)? +s§]}]

(20)

hmatng, (2])

e N
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It is easily found that the valyes required are

e 3
=7, Uy=3F, ¢t ="’lal """"'zd

Tytny
Y T
Ol max)‘(ﬁ) (ﬁ) T ko m,  (22)
C(w max)
whence Ag =—— 23 _ o Houtag 8f1a0
X C’(Qma,x) ( 1+nl) i W
= (4 ng)kr1tn9 Gy, 4 1, 0)-iinsiny), (23)

Further, as Romanovsky has shown, the distribution of 6 in repeated samples
2, and X, from normal populations with g common variance is

e =D piing-1) Ty +ny—2
¢(0)_1"(§[n1—1])l"(1}[n,-1])P(\1 ’2‘= )0}(%.—!)(n1+n,5)—i<h+ﬂrﬂ. (24)

Ag, has its maximum value of unity when 6=1, or s,=4, and decreases as 6
tends to zero or infinity, thatis tosay, as the difference between 8, and s, increases.
It will be noticed at once from (18), (19) and (23) that

Ag=AgAg. (25)
We are now able to see more clearly the interpretation of Ag. The likelihood

can only attain its maximum value of unity when both §=1 and §=0, or 8, =4,
and Z, =7,. It will decrease towards zero when

(@) 60 or s, becomes small compared with s,
or (b) 6-co or 8; becomes small compared with &,

or (¢) |¢]->c0 or | —Z,| increases compared with

1,83+ ng83 (l+—1-‘)}.
ny+n,—2 \ny
It is clear that, on the one hand, even if Z =7, or Ay, =1 we should be unable

to accept H if s, differed considerably from s, (or A7, was sm.a.ll). ‘While on t:;e other
hand if 8, =s, (or Az, =1) we should feel that the populations were not the same

if [, —%,| were large compared to

8} +7y8} (i_i__l__l)}
"/{”1+7"a'2 Ny
variances of the standard error of the

which is an estimato based on the samplel\x is more crucial than either Az or

i i he criterion .
R S.i‘;i);g:l of course in many problems the hypothesis to be
ese common forms H, or H,.*

i i i f th
tested will present itself in one 0 . .
ren and n, times respectively by
iffer t.nglegatanda,mmn:nd:n, tn,r  reepec

instrum . It ma; then .
we:ta-f bt wo moay wish to tast ypotbesis H, namly that
3 1]

Ay, taken separately,

* For example, () two di
the same person using the same
ments will be the same in both cases,
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sowitisi i otetheformof)tggivenm(u);

) POint‘l;xOf‘ﬂ;lw I::elgiet:l;ﬁfintgl;ore improbable a8 ;itl{er .of the

- m;thmgzrgyg:ﬁ:;ﬁm decreases compared to the‘ st&pt_iard eviation of

:;r;np ]Zd samples, This again is in agreement with our.mtultloz(l).nable LA

TlI:z:e gimple considerations indeed suggest that Ag 18 8 reas g

i o the danger of i false hypt')thems, and it appears

tt: :eﬁsl?yl?)eufmnu?ﬁve requirements in & W&y which neither :;‘ oa u} ﬂi( o;-i }tl ar;
able to do*. But if we accept the criterion sugg'est?,d b'y th.e m;sd 0 t(:)con : 1,:(})1

it is still necessary to determine its sampling distribution In order . rol the

error involved in rejecting a true hypothesis, because & knowledge of / alone is

not adequate to insure control of this error. We cannot for example say in general

i + tified in rejecting the hypothesis. In order
that if A< A, = 0-01, we should be justified in rejecting t
to ﬁtx a h:ftnbetween “small” and “large” values of A we must know how often

such values appear when we deal with a true hypothesis. That is to say we must

£ P, , the chance of obtaining A< A, in the case where the hypo-
gx:::;ski;1::9:’:';:idigse'r.lc:ue.Ao The frequency distribution of A differs according to the size
of samples and the nature of the hypothesis tested, and it may well happen that
the modal value of A is in the neighbourhood of zero. For the cases of H, and H,
the distributions (24) and (20) of 6 and ¢ provide what is required, but for H
the position is not so simple.
We know that the frequency function for simultaneous variations of Z;, Z,, s,

and s, is = _ = _ )2 2 2
G2 str2exp— ‘"1(1'1 a)*+ "3(37502“) +m8+ ”252} A (26)

The value of G is anfrinfm
Co= s
{m J(20)}imtm (i [n, — 1]) D} [, — 1])
Now transform the variables to
g’ Ty —Z, Ny N
—Fy—a; £= 1% ( 1 1’:,,)
=% 2 g +n, ) A \ny+ (27)
0=;;; q="1y8+nys}.
Then it follows that

P s 0Oq
i tn0’ % 1y + 0,6’
while it is not difficult to show that

(%1~ 0) 4+ ny(Zy — a)? = {/(ny + ng) B+ £ VE (g fng)}2 + £2q. (29)

@, =ay. (b) Some two angles a, and a, are measured soveral times b
observer with two different instrum ) .
two sets of measurements is the lamo';ml;‘c:e:[::-o_qm;mmf arisos a8 to whether the precision of the
tion is made about the values of a, and ay, = This is the test of hypothesis H,. No

* Besides the paper in Metron slready referred to
& short Note on the same subject in which there i.,
concern the hypothesis H from two different points
reallyhewutuﬁngnotthohypo(,h“i.g‘ but

(28)

Y two observers or by the same

2

Professor Romanovsky published in Russian
& sentence stating that the tests like t and &

of view, Evident] :
ly the auth
g Hpokine e uthor felt himself that

Problem of two samples 107
Further the Jacobian of the transformation gives

a(Elf 585 81’ Ga)

9(Z3, £,9,06)
Hence the probability law of %, £, ¢, 6 is

=iJ(nl+n.) -¥(n, +n, 0y gb. (30)

NNy

1 ny+
C'of4 J (1*"”) qinring®) Gn9(n, 4 ny0)Hnrine®

NNy
exp — {23 (1 +ny) '2*'05 N A (m/ny)}? e—aa+Met (31)

We may now integrate for Z; between the limits — oo and + oo and shall merely

have in place of the Z; term a factor {27/(n, + ng)}t 0. Hence the probability law
of £,qand @ is

o [ 2w
Cog Jm—m XM (g O)Hnut e gl +na— exp — 1(12%’5’) . (32

To integrate for g between the limits 0 and + oo we write u =g (1 + £3) (20"~ and
find the probability law of £ and @

F (& 6)= +ig 2}y tna—4) s >
WE, 0)=Cho™ (R J ("‘1‘".) G¥na=9)(p, 4 o O)—Amrne—D
X (14 g2)—inytna—1) f v ulertne—9 g—u gy,
0

which on substituting I'(}[n, + ny— 1]) for the u-integral and using the value for
C, given above results in

0D MmO T4, 4 my—
L3 [n,— 1]) T(3ny,—1])

If now we substitute for £, £ = ,/(n, +n;— 2) £, we see on comparison with (20)

and (24) that
F6.0)=B( Ty 0) =090 (34

That is to say the simultaneous distribution of £ and 6 is identical with the pro-
duct of their independent distributions, or in pairs of random samples %, and =,
from a common normal population, the two coefficients ¢ and 6 are completely
uncorrelated. This result (34) combined with the previous result (25) is of con-
siderable interest. F(t,§) may be represented by a two-dimension density field;
for a given value of 6 the change in ¢ follows a Pearson Type VII law; for a given
t the change in 6 follows a Type VI law; for a given ¢ the change in # follows
a Type VI law. As there is no correlation, the array disteibutions are homo-
scedastic and the same as the marginal distributions.

As shown by (18) the contours of constant A5 are closed oval curves in the
field, not corresponding exactly to the contours of equa._l depsity: but tending
to these as n, and n, are increased. The chance of obtaining in pairs of samples

) i, + nyy-Houtm-d (1.4 Eiy-bounen,  (33)
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alue of Ay less than a0y given &mount,;:f:.i‘i t/l\lz-lcl:mgur represented by
a value of Ag - 10 the COITES 1 el
mpmentedaﬁfii(s%) tﬁ?ﬁv:ﬁ(rpw:imate method of obteining this probability
(18). Wesh: cuss ) :
integr-a.l._ i £ the problem We have considered mnesoijgs:ifn::isﬁ:lﬁ:
A limiting case of the P The second gample then becom s
>+ 00, but keep m finite- T80 e g ond 4,0 In fact We ate nOW testing
from an infinite population, 80 3 =0 of (=) with mean %(=%,) and

. m . .
a simple l:iyp?tl:iesm.a Z‘”’:’;’Ii::sge:nwdrfwn from a normal population with
standard deviation =8

nd standard deviation of @ 8nd @ respectively. It is nob difficult to show
mean

that the limiting form as ng~>% of Ag of (18) becomes

i (%)n e [_ W [@:_“&):j_"f = 1}] (35)

This is the problem we have considered elsewhere (19?8 a, Pp- 18’;—?)*. In tll.mt
case m=%—a and s? are two completely independen‘t criteria anfi their sampling
distribution is represented by & density field in which the distribution of m for
a given s is & normal curve and that of s for a given ma Pearson Type I1I curve.
The contours of Ay were also closed oval curves tending to conesPond to the con-
tours of equal density asn Was increased. In our paper we gave dmgrams of these
contours and also tables of Py, the chance of drawing & sample Wlt‘h A lefgs t.han
any given value. These tables form what might be termed tht? ma,r'gma.l distribu-
tions, corresponding to n3>00 OF 7,00, of the tables required in our present
problem. They involved considerable computation using quadratures; we shall
be content in the present paper with a more approximate solution of the problem
of finding P, , for the case of two samples.

III. Tae MoMENTS OF THE DISTRIBUTION OF Ay AND APPROXIMATIONS
10 Py

It is not difficult to find the moment coefficients of the distribution of Ay
obtained when repeated pairs of random samples are drawn from the same normal
population. We shall first obtain these coefficients and then outline the stages
which have led to the provisional tables connecting Az and P, which we give

at 'the end of this paper. A more detailed analysis of the problem is required, but
this we must leave for a later paper.

‘We have the two relations
Ag=(my+n)itmd Gina(n, 4, 0) Kt (1 4. g2)-hinyino (36)
and  F(E,0)=Cyb 0, 4y 0)Hoctr (1 4. g2yt (37)

* The hypothesis was there termed Hypothesis A. E.

of our previous paper. quation (36) above corresponds to (Xix)
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where G, is the constant term given in (33) above. Denote by s the kth moment-
coefficient of Az about zero, then

@® f+o
w=[ [T meo o
=GCy(ny + ""z)i("‘“"y‘J‘ +w OY A Dns-31(n, 1, ) HEAD (arn-21dG
0
+®
x J._ (14 £2)H 04D @utnd-1gE — Oy + mo)hrstnoX L, Iy,

The integrals I, and I, may be calculated separately. Writing u=n,/(n,+n,6)
we obtain a Beta Function for the first, or
I =n, HOetDmty K401 B {(k+ 1) ny — 1], 3{(k + 1) na— 1)) (38)
and writing v=(1+£%)!
I;=B(@[(k+1) (ny+ng)— 2], ). (39)
From these results it follows that

. ((m & nz)"‘“")*" T(3{(k+1)n,— 1) TRI(ke+1) 5y —1])
5 nyngt TG[(k+1) (v, +ny— D))
T(}[ny +ny—11)
X F§n— 1D T4 — 11" ™
The limiting value of (40) in two cases is of interest.
(1) When n, and n, both become very large. Using the first approximation given
by Stirling’s Formula or, I'(z) ~a-tee 4(2") (41)

it is found that as n; and ng>00 pes1(k+1)

(42)

uniformly whatever be k. We conclude that the frequency distribution of A
tends at the same time to a limiting form having its kth moment equal to (k+ 1)1
Tt is the so called Rectangular Distribution, or f(A) = constant. We therefore
appear justified in assuming that when comparing large samples, the frequency
distribution of A will tend to this form, or P, will approach Ay in value.

(2) When ny becomes very large, 7y remaining finite. Making ny->c0 in (40) and
using (41) we find that

TGIE+Dm=1D ¢, g2V
A Vi | ”‘(m) ’ “3)

an expression giving the moment coefficients of the distribution of A whose
probability integral we have tabled in our earlier paper.

In order to obtain some appreciation of the rapidity with which the distribu-
tion of Ay in the two sample problem tends to the rectangular form, we have
calculated from (40) the frequency constants: mean 2, standard deviation of
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iven in Table I. For
A, B and B, for a variety of values of ny and ng*. Th:;: e:‘m give
the rectangular distribution these constants have ;r'w. e,
Mean =0-5; Standard deviation=1/ J12=0-288 Hy ;& I:ts approach the
Wo have also calulated certein values of (43). All cons o %ut D
values for the rectanguler distribution 82 7 i By 229 mcl:]d be justifiable to
further analysis it is not possible to 82y at what point it WO e ]t,he e
use the equality Py, =Ag. We propose here only to seb out brie by1 ps in
reasoning which have led us to the rough Tables IT and III given ~be :.w.
(@) As Ay must lie between 0 and 1 we assume that its distribution can be
represented approximately by the law

100 =KD i1 2y (44)
The rectangular distribution is a special case of this, arising when p=¢=1.
(b) The p and g of (44) may be expressed in terms of the mean, 7;, and the
variance, m, of the distribution; namely

P =%{m1(1 e P=1—;:—‘1 {my(1 —my) —mo}. (45)

(¢} Substituting in (45) the true means and standard deviations of the dis-
tributions given in the third and fourth columns of Table I, that is putting
m, =Mean Ag, my =iy — (Mean Az)? we have calculated p and ¢ in each case.

(d) The curves represented by (44) have the following values for §, and s,

4 4p=0r@a+])
T pglp+g+2?

ﬂ'=3ﬂ1(p+q+2)+6(p+q+ 1)

2(p+q+3) :

These have been calculated using the p’s and ¢’s of (c), and the resulting values
are given in the 7th and 8th columns of Table I.

(e) It will be seen that these latter values agree to the 4th decimal place very
clogely with the true values of #, and p, for the Ay distribution calculated from
the moment coefficients of equations (40) and (43) and given in the 5th and 6th
columns of the table. This suggests that the curves (44) may give a reasonable
fit to the true Ay distribution, although a more exact confirmation is clearly

required in the critical region near A;=0. A i 3 st g
seribed below. " partial check on this point is de

(46)

(f) Using these curves (44) we have computed f i i
the samples the values of A for which ’ or soverel, difforont saes of

AH
PI\H"J.O fA)dr=0-06 and 0-01.

* Mean A = z;, Standard deviation == /(u;— w3,

fourth moment-coefficients of A referred to the m::: if pty, 1y and p, are the second, the third and
y

Bimidid, Bympiful.

i
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These. are given in Tables IT and ITI. The computation was rendered easy
Peca,use in all cases the value of ¢ differed only slightly from unity, and therefore
in the neighbourhood of A =0 we obtain approximately from (44)

I(p) D(g) 3%
= —. 47
Aq I\(p £ q) ) ( )
TABLE I
Moment Coefficients of Ag Distribution
True values from equations (40) and (43) Valu:;aom (“){
ny ny | Mean A or b ‘ b A Bs
5 5 <4222 2986 <0787 1-8257 -0779 1-8252
5 10 4403 2973 10451 1-8001 -0450 1-8001
b5 20 4459 -2969 +0365 1-7942 «0367 1-7943
5 50 -4477 -2968 -0339 1-7924 -0342 1-7926
5 -] 4481 -2068 10334 1-7920 -0338 1-7922
10 10 4634 -2946 -0166 1-7863 -0165 1-7863
10 20 4718 2935 -0098 1-7855 -0098 1-7856

10 50 4749 2931 0077 1-7856 -0077 1-7856
10 (-] 4767 -2930 <0072 1-7857 10072 1-7857

\ 20 \ 20 | -4823 | -2018 | -00383 | 1-7879 \ .00382 | 1-7880

50 -4869 2911 +00208 | 1-7901 00208 | 1-7801
© 4882 2909 «00168 | 1-7908 00169 | 1-7908

\ 50 \ 50 4930 +2900 00059 | 1-7940 \ -00058 | 1-7941

© 4964 2896 00026 | 1-7959 «00026 | 1-7959
© 5000 +2887 00000 | 1-8000 -0000 1-8000

(¢) For the limiting cases m, (or n,)=00 we may compare the values of Ag
corresponding to P, =0-05 and 0-01 computed in this approximate manner with
those obtained from the tables in our earlier paper (Neyman & Pearson, 19284,
Pp- 238-40). The latter were obtained by a quadrature of the density field lying
inside the oval A contours in the (m, §) field i.e. by a completely independent and
exact method. They are given in brackets in the marginal columns of Tables IT
and III, and will be seen to agree very closely with the results of our present
approximation. NCF

(k) As a further check on the acouracy of this method of al.)pronm&.tlon, the
case n,=mny=>5 was taken and the integration of F(¢,0) outside certain of the
Ay contours was carried out by using quadratures. It was found that,

for P, ; =001, Ag=0-00193 against the approximate value of 0-00186;
for Py, =006, Ay =0-0169 against the approximate value of 0-0167.

The former values are given in brackets in the cells corresponding to ny =ny=5
of Tables II and TIT.
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noy constants the distribution of

; ue
(k) As far as can G Juig:: ::,gn;;};efie ghe gpecial case 7 =7y = b are O_f the
A for the limiting a3 :}.16 other cases. The agreement therefore, described in (g)
same general type a8 lﬁ the true values of A found by quadrature and those found
;nd (#) al;gve,:;?::‘z 4), suggests that Tables IT and I may be taken through.
ogtu:;ngivilel; adequabe’&pproximations to the values of Ay corresponding to

P,=0-05 and 0-01.
TABLE II
Values of Ag giving Py = 0-05
iy
5 10 20 50 0
TR T 0241 -0247 -0248
0167 0222 s
5 (0169) (-0247)
0222 -0312 -0349 -0364 -0368
10 (-0367)
0241 10349 -0401 -0425 .0432
™ o (-0431)
50 -0247 0364 -0425 -0459 <0473
(-0474)
- -0248 -0368 -0432 -0473 -0500
(-0247) (-0367) (-0431) (-0474)
TABLE IIT
Values of A giving P, = 0-01
L
$ 10 20 50 o
5 -0019 -0029 ;
(-0019) 0033 -0034 -0034
(-0033)
-0029 ’ T
10 0048 -0058 -0061 -0062
- (-0062)
g P -0033 . i
E Hisg 0071 0078 .0080
i (-0079)
50 o -0081 :
0078 -0088 0092
o (-0034 W,;‘“‘ \W- GO0
-0033) (-0082) : 0092 0100
(-0079) (-0092)
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IV. AN ILLUSTRATIVE EXAMPLE

In our previous paper (loc. cit. p. 202) we took as an exam iations i
. . P. ple the variations in
Cephalic Index (breadth to length ratio x 100) measured on each of two series of
10 human skulls, namely

Series 1,
74:1; 177 T44; T40; 73-8; 172:2; 1752; 1782; 7T71; 784
n,=10; % =17516; 8,=2-069.
Series 2,
66-7; 69-4; 67-8; 73-2; 79-3; 80-7; 64-0; 82-2; 72-4; 781
ny=10; 7T,=173-47;, 8,=05042.

‘We then inquired whether it was likely, as far as the cephalic index was con-
cerned that these two sets of skulls could be random samples from a population
in which the mean cephalic index was 75:06 and the standard deviation 2-68,
and concluded that it was very probable in the first case (P, = 0-504), but highly
improbable in the second (P, <0-0001). We were then testing two “simple”
hypotheses.

We may now proceed to test the “composite” hypothesis that these two
samples have come from the same population, without specifying what that popu-
lation may be, except that it will be assumed that the distribution of cephalic
index does not differ so much from normality as to invalidate the test.* On
combining the two samples it is found that s,=4-562, and hence

A =(8,85/83)10=0-00492.

Table IIT indicates that this value corresponds very closely to P, =0-01;
that is to say only once in a hundred times should we expect our criterion to have
as low or a lower value were the hypothesis tested true. We should therefore
conclude that it was very unlikely that the two series of skulls came from the
same population. The values of ¢ and 6 for this pair of samples are

t=0-973, (=8-328.

The point R(t, §) representing the samples has been plotted in the accompany-
ing diagram, and also a curve representing (though not drawn to scale) the
member of the family of contours (18) for which Ay =0-00492. Then P, is
the integral of the function F(¢,6) of (33) and (34) taken throughout the region
of the field lying outside this contour. )

Let us also consider the hypotheses H; and H,. Equation (23) gives
Ag, =0-00822; this is constant for sample points lying not only on t.h'e line
R’ N R through R, parallel to the axis of £, but alsoone second perallel Q MQ.
The latter corresponds to certain pairs of samples in which 8, is greater tl{a.n
8y, and 6=0-120. Py is the integral of F(£,0) over (a) the region for which

* The sensitiveness of the test t0 deviations from normality will require further consideration.
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; ; is to say over the two shaded

0> 8-328 and (b) the region for which 6<0:120, that 18
n.r:as of the dga,)gmmr.eﬁ is found that Py, =0-0042*, We shouil'lc‘loger:folie:on_
clude that it was extremely unlikely that the two samples can;le t HP' I;)u ations
with & common standard deviation, and as the test of hypot. esmt.a, A (;s :T;d on
the assumption that the populations sampled have & commmon standar e‘fla',
b £ however we had some a priors

3 n to examine this. I !
;ll':l:;nz: ;l(:: ul:gli};;iuzlgyt%z: o, =0y, and that therefore the observed difference

between s, and s, was just & very abnormal chance fluctuation, then we might
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i

; 2%'% oL

g = 5
I

continue and examine hypothesis H,, and should find A, = 0-599, and entering
Student’s (1925) Tables with ¢ = 0-973, n=18, P, =0-343. That is to say we
should conclude that there was nothing exceptional in the difference in mean
cephalic indexes. It will be noted that

AH =0-00492 = AH‘/\H’= 0-00822 x 0-599

as follows from (25).

_ It may appear at first to be illogical that while P, £=001, P, =0-0042. But
o 133 . exflembered that in testing hypothesis H, we are onlly questioning
Whetheli e hl.(ely that the population standard deviations are the same. Con-
sequlilng ; palrfof samples corresponding to a point (¢t,6) at L in the diagram
wo(;x th oy fa]v;ourabl? ko the ,hYPOthesis H, than the observed pair at R,
and the region of the field in the neighbourhood of L is excluded in obtaining the

* Using Fisher’s transformation and the tab]
. es refe £
el e e o ST s 0
ol e transformation u=(14. gy . -01. The value 0"
Beta Function Integral. =(1+0)"* and using unpublished tables of the Incomplete

DRSS N

e i o T R

—
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P, integral. But in testing the hypothesis H we are examining the two samples
as a whole; the point L corresponds it is true to a lower value of 8 but to a larger
value of ¢ than does R. It lies on an outer likelihood (A) contour to R, and the
region in which it lies is included in the P, integral. If the essential d’iﬁ'erence

in tht? na,tur.e of the hypotheses H and H, is understood, it will be seen that there
is no inconsistency in the fact that for the pair of samples used in our illustration
Py > P, a,
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