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Must Psychologists Change the Way They Analyze Their Data?

Daryl J. Bem
Cornell University
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Wagenmakers, Wetzels, Borsboom, and van der Maas (2011) argued that psychologists should replace
the familiar “frequentist” statistical analyses of their data with Bayesian analyses. To illustrate their
argument, they reanalyzed a set of psi experiments published recently in this journal by Bem (2011),
maintaining that, contrary to his conclusion, his data do not yield evidence in favor of the psi hypothesis.
We argue that they have incorrectly selected an unrealistic prior distribution for their analysis and that
a Bayesian analysis using a more reasonable distribution yields strong evidence in favor of the psi
hypothesis. More generally, we argue that there are advantages to Bayesian analyses that merit their
increased use in the future. However, as Wagenmakers et al.’s analysis inadvertently revealed, they
contain hidden traps that must be better understood before being more widely substituted for the familiar
frequentist analyses currently employed by most research psychologists.
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Twenty five years ago, Efron (1986) published an article entitled
“Why Isn’t Everyone a Bayesian?” in which he argued that sci-
entists should adopt a combination of Bayesian and the more
familiar “frequentist” methods for analyzing data. Recently,
Wagenmakers, Wetzels, Borsboom, and van der Maas (2011)
argued that psychologists must actually replace those familiar
methods with Bayesian analyses. To illustrate their argument,
Wagenmakers et al. reanalyzed a set of psi (ESP) experiments
published in this journal by Bem (2011) and argued that, contrary
to his conclusion, “Bem’s p values do not indicate evidence in
favor of precognition” (p. 426). In this brief response, we examine
their analysis.

The term psi denotes anomalous processes of information trans-
fer that are currently unexplained in terms of known physical or
biological mechanisms. One variant of psi is the anomalous retro-
active influence of some future event on an individual’s current
responses. In his article,Bem (2011) reported nine experiments
testing the hypothesis that retroactive or time-reversed versions of
four common psychological effects would produce the same ef-
fects as the standard “forward” versions. For example, it is known
that rehearsing a set of verbal materials enhances an individual’s
ability to recall them on a subsequent free-recall test. In a time-
reversed experiment and its replication, Bem demonstrated that
individuals will display enhanced recall even if the rehearsal takes
place after the recall test has been administered. (In criticizing

Bem’s research as exploratory, Wagenmakers et al., 2011, failed to
acknowledge that four of his nine experiments were actually
replications of others in the set.)

In reporting his results, Bem (2011) performed the standard
statistical analyses familiar to most psychologists and concluded
that all but one of his nine experiments yielded statistically sig-
nificant support for the psi hypothesis. Across all nine experi-
ments, the combined (Stouffer) z was 6.66, p � 2.68 � 10�11,
two-tailed, with a mean effect size (d) of 0.22.

We are not opposed to Bayesian analyses. In fact, Jessica Utts
and Wesley Johnson—the second and third authors of this re-
sponse—are Bayesian statisticians who have themselves analyzed
psi data. For example, they and two coauthors performed a Bayes-
ian meta-analysis of 56 experimental studies of telepathy (Utts,
Norris, Suess, & Johnson, 2010). Utts and two coauthors per-
formed a Bayesian meta-analysis of 38 “presentiment” studies—
from which two of Bem’s experiments derived (Mossbridge, Tres-
soldi, & Utts, 2011). And finally, Johnson is the coauthor of the
article on Bayesian t tests that Wagenmakers et al. (2011) cited as
the basis for their own analysis (Gönen, Johnson, Lu, & Westfall,
2005).

As Efron (1986) originally warned, however, it requires careful
thought to apply Bayesian methods correctly, and we believe that
Wagenmakers et al. (2011) have not done so. (Rouder and Morey,
2011, who also performed a Bayesian analysis of Bem’s 2011 data,
are also critical of the Wagenmakers et al. analysis.)

The Challenge of Specifying the Experimental
Hypothesis

Bayesian analyses are designed to pit the null hypothesis (H0)
against a specified experimental hypothesis (H1). To perform a
Bayesian analysis, one must specify two different types of prior
belief. The first and most familiar is the prior odds that H0 rather
than H1 is true. It is here that Wagenmakers et al. (2011) formally
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expressed their prior skepticism about the existence of psi by
setting these odds at 99,999,999,999,999,999,999 to 1 in favor of
H0. Specifying this type of prior belief gives deniers, believers, and
everyone in between the opportunity to express an explicit opinion
before taking the data into account.

The second prior belief that must be specified is more compli-
cated and not widely known to those unfamiliar with the details of
Bayesian analysis. This is the explicit specification of a probability
distribution of effect sizes across a range for both H0 and H1.
Specifying the effect size for H0 is simple because it is a single
value of 0, but specifying H1 requires specifying a probability
distribution across a range of what the effect size might be if H1

were in fact true.
Another element of Bayesian analysis not widely familiar to

research psychologists is the “Bayes factor,” a number that indexes
the posterior odds of H1 versus H0 (or the reverse) after the data
are incorporated into the analysis. Numerically it equals the pos-
terior odds for someone whose prior odds were one to one, that is,
who initially assigned a prior probability of .5 to both H0 and H1.
The posterior odds for other prior odds are calculated by simply
multiplying those odds by the Bayes factor. Because the Bayes
factor itself is independent of the prior odds, it can easily be
mistaken for an objective assessment of the experimental results,
uncontaminated by subjective beliefs. But this is not true because
the Bayes factor depends on the prior specification of H1.

Accordingly, our critique of Wagenmakers et al.’s (2011) anal-
ysis is that their choice of H1 was unrealistic. In particular, they
assumed that we have no prior knowledge of the likely effect sizes
that the experiments were explicitly designed to detect. As Utts et
al. (2010) argued,

It is rare that we have no information about a situation before we
collect data. If we want to estimate the proportion of a community that
is infected with HIV, do we really believe it is equally likely to be
anything from 0 to 1? If we want to estimate the mean change in blood
pressure after 10 weeks of meditation, do we really believe it could be
anything from �� to ��? Even the choice of what hypotheses to test,
and whether to make them one-sided or two-sided is an illustration of
using prior knowledge. (p. 2)

In general, we know that effect sizes in psychology typically fall
in the range of 0.2 to 0.3. A survey of “one hundred years of social
psychology” that cataloged 25,000 studies of eight million people
yielded a mean effect size (r) of .21 (Richard, Bond, & Stokes-
Zoota, 2003). An example relevant to Bem’s (2011) retroactive
habituation experiments is Bornstein’s (1989) meta-analysis of
208 mere exposure studies, which yielded an effect size (r) of .26.

We even have some knowledge about previous psi experiments.
The Bayesian meta-analysis of 56 telepathy studies, cited above,
revealed a Cohen’s h effect size of approximately 0.18 (Utts et al.,
2010), and the meta-analysis of 38 presentiment studies, also cited
above, yielded a mean effect size of 0.28 (Mossbridge et al., 2011).

Consequently, no reasonable observer would ever expect effect
sizes in laboratory psi experiments to be greater than 0.8—what
Cohen (1988) terms a large effect. Cohen noted that even a
medium effect of 0.5 “is large enough to be visible to the naked
eye” (p. 26). Yet the prior distribution for H1 that Wagenmakers et
al. (2011) adopted places a probability of .57 on effect sizes that
equal or exceed 0.8. It even places a probability of .06 on effect
sizes exceeding 10. If effect sizes were really that large, there

would be no debate about the reality of psi. Thus, the prior
distribution Wagenmakers et al. placed on the possible effect sizes
under H1 is wildly unrealistic.

Their unfortunate choice has major consequences for their con-
clusions about Bem’s data. Whenever the null hypothesis is
sharply defined but the prior distribution on the alternative hypoth-
esis is diffused over a wide range of values, as it is in the
distribution adopted by Wagenmakers et al. (2011), it boosts the
probability that any observed data will be higher under the null
hypothesis than under the alternative. This is known as the
Lindley–Jeffreys paradox: A frequentist analysis that yields strong
evidence in support of the experimental hypothesis can be contra-
dicted by a misguided Bayesian analysis that concludes that the
same data are more likely under the null. Christensen, Johnson,
Branscum, and Hanson (2011) discussed an analysis comparable to
that of Wagenmakers et al., noting that “the moral of the Lindley–
Jeffreys paradox is that if you pick a stupid prior, you can get a
stupid posterior” (p. 60).

Testing a Knowledge-Based Distribution for H1

We now examine what happens when a more realistic prior
distribution is used to define H1. We call our distribution the
“knowledge-based” prior because it reflects what we already know
about effect sizes typically observed in psychological research,
including previous psi research. We selected a normal distribution
centered on 0 for our alternative prior, and the only parameter
required to specify this distribution is the spread. Using the earlier
outcomes for guidance, we set the 90th percentile of the absolute
values to be an effect size of 0.5. That is, someone with this prior
believes that if psi is real, the probability is .9 that the absolute
value of the true effect size will be less than or equal to 0.5.1

Next, we computed the Bayes factor for H1 to H0 for each of
Bem’s (2011) nine experiments under this prior. (Wagenmakers et
al., 2011, actually presented Bayes factors of H0 to H1, but it is
easier here to interpret the reciprocal, H1 to H0. See, for example,
the Bayesian analysis of psi data in Bayarri & Berger, 1991.)
Using the assumption that the effect sizes under H1 for the separate
experiments are independent and are drawn from a single effect
size distribution, we also calculated a Bayes factor for the nine
experiments combined by computing the product of the separate
Bayes factors. And finally, for these Bayes factors we calculated
the associated posterior probability that H0 is true for all of the
experiments when the prior probability on all H0 being simulta-
neously true is .5. In this analysis, we assume that either all null
hypotheses are true or all alternative hypotheses are true. The
results are shown in Table 1. Bem’s frequentist results are shown
in the first data column, and Wagenmakers et al.’s results are
shown in the last column. The combined Bayes factors and pos-
terior probabilities on H0 for all nine experiments are shown in the
bottom two rows.

1 Following Rouder, Speckman, Dongchu, Morey, and Iverson (2009),
we assume that the data values are normal with mean � and variance �2,
with the Jeffreys’ prior (1961) serving as the standard reference prior for
the variance in this model. For all our computations we used Markov chain
Monte Carlo simulations with the statistical software WinBUGS (Lunn,
Thomas, Best, & Spiegelhalter, 2000) to get numerical approximations.
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The main finding in Table 1 is that under the knowledge-based
prior, the Bayesian analysis yields the same overall conclusion as
Bem’s (2011) original frequentist analysis. In fact, if we adopt
Wagenmakers et al.’s (2011) own verbal labels for characterizing
the size of a Bayes factor (BF)—which they, in turn, adapted from
Jeffreys (1961)—five of the nine experiments individually yield
either “strong” (BF � 10) or “substantial” (BF � 3) evidence in
favor of H1. Most important, the combined Bayes factor of 13,669
greatly exceeds their own criterion for “extreme” evidence in favor
of H1 (BF � 100), with a posterior probability on the composite H0

of 7.3 � 10�5. Only the diffuse prior used by Wagenmakers et al.
(2011)—known as the standard Cauchy distribution—fails to
show strong support for the psi hypothesis.

In an online appendix to their article, Wagenmakers et al. (2011)
claimed to show that their conclusions are robust across different
priors for H1, but they continued to confine their consideration to
diffuse Cauchy priors. If they had simply considered a Cauchy
prior analogous to our knowledge-based prior (i.e., one that places
a 90% probability on effect sizes with absolute value less than 0.5)
they, too, would have discovered “extreme” evidence in favor of
H1, namely, a composite Bayes factor of 1,964 and a posterior
probability on the composite H0 of 0.0005.

Critics of using Bayesian analyses frequently point out the
reductio ad absurdum case of the extreme skeptic who declares psi
(or any testable phenomenon) to be impossible, that is, who holds
the prior probability of 0 for the psi alternative. In this case, the
Bayesian formula implies that no finite amount of data can raise
the posterior probability in favor of the psi hypothesis above 0 or,
alternatively, lower the posterior probability in favor of the null
below 1. The critics point out that this effectively confers analytic
legitimacy on the most antiscientific stance.

More realistically, all an extreme skeptic needs to do is to set his
or her prior odds on the psi alternative sufficiently low so as to rule
out the probative force of any data that could reasonably be
proffered. This raises the question in the present case of how close
to 0 the prior probability for the psi alternative would need to be
to maintain a posterior probability in favor of the null close to .95.
For the knowledge-based prior with a one-sided alternative in
favor of psi, one’s prior probability that the psi alternative is true

would have to be 10�8 or lower. Thus, when taking the combined
data into account, it would take very strong initial skepticism
regarding psi to retain a reasonably high posterior belief in the null.
Of course Wagenmakers et al. (2011) admitted that their a priori
belief in the psi alternative is, indeed, very close to zero (10�20),
so even the posterior probability of 7.3 � 10�5 for the null
obtained with the knowledge-based prior fails to exceed their
threshold for being convinced.

Must Psychologists Change the Way They Analyze
Their Data?

We now return to the original question raised by Wagenmakers
et al. (2011): Must psychologists change the way they analyze their
data? We believe that scientific questions addressed with modeled
data can almost always be approached with either frequentist or
Bayesian methods and that this question is similar to asking
whether traditional chalk-and-talk lecturers must change the way
they lecture. The answer to both is “no” if they are content with
their current practices and prefer not to adopt new, more versatile
tools. Precisely because Bayesian methods expand the modeling
options, there are now thousands of Bayesian analyses published in
the scientific literature and an explosion of Bayesian methodology
in most data-oriented disciplines.

An anonymous reviewer of this article commented that

I have great sympathy for the Bayesian position. . . .The problem in
implementing Bayesian statistics for scientific publications, however,
is that such analyses are inherently subjective, by definition . . . with
no objectively right answer as to what priors are appropriate. I do not
see that as useful scientifically. . . . It is unclear to me how we can
have agreed upon priors for a collective such as the body of psycho-
logical researchers.

We believe that this comment reflects a misunderstanding about
Bayesian statistics that may be widespread among psychologists.
Eminent statistician George Box has noted that “essentially all
models are wrong, but some are useful” (Wasserstein, 2010). In
fact all model building in statistics is inherently subjective, and we

Table 1
Frequentist Analysis Compared With Two Bayesian Analyses Using Different Prior Distributions on H1

Experiment Frequentist analysis (Bem, 2011)a (p) Knowledge-based prior (BF) Cauchy prior (Wagenmakers et al.)b (BF)

1 .014 4.94 1.64
2 .018 3.45 1.05
3 .014 5.35 1.82
4 .028 1.76 0.58
5 .028 2.74 0.88
6 .018 3.78 1.10c

7 .19 0.50 0.13
8 .058 1.62 0.47
9 .004 10.12 5.88
Combined z or BF z � 6.66 13,669 0.632
Posterior probability all H0 2.68 � 10�11 7.3 � 10�5 0.61

Note. H1 � experimental hypothesis; H0 � null hypothesis; BF � Bayes factor.
a Because the hypotheses in Bem (2011) were explicitly directional, he reported one-tailed tests. Wagenmakers et al. (2011) objected to that, so we here
report two-tailed tests. b Wagenmakers et al. (2011) reported Bayes factors of H0 to H1, so the figures in this column are the reciprocals (H1 to H0) of
their numbers. c Wagenmakers et al. (2011) evaluated two separate t tests reported by Bem for Experiment 6; we used the combined t test and have
updated their Bayes factor to correspond to that combined t test.
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believe there is great utility in specifying a prior distribution in a
statistical analysis.

There are three kinds of prior distributions that can be adopted
in a Bayesian analysis, each with a different goal. Some Bayesian
analyses use “reference” priors that are designed to minimize the
effect of the prior on the conclusions. Others use “objective”
priors, designed to result in inferences that satisfy frequentist
criteria. Finally, there are “subjective” priors, which are warranted
when there is relevant prior information that can be quantified.
This is what we have adopted here in our reanalysis of Bem’s
(2011) data, incorporating prior information consistent with pre-
vious psychological literature on effect sizes. (We also performed
sensitivity analyses in which we perturbed these priors modestly to
confirm that the conclusions do not change.) Readers who disagree
with our prior are free to disagree with our conclusions. In con-
trast, Wagenmakers et al (2011) have specified a prior distribution
that is not based on any prior knowledge. Instead, it is a prior that
produces the Lindley–Jeffreys paradox because it posits unrealis-
tically large departures from the null under the psi alternative. As
we note above, more than half of their posited distribution lies
beyond a gigantic effect size of 0.8. Having failed to see such
implausible departures, they concluded that the data are more
consistent with the null than the alternative. Readers are now in a
position to decide for themselves which prior seems the more
plausible.

This debate is an excellent illustration of how science works.
Different individuals working on the same scientific problem come
to different conclusions based on their own assumptions and
models—which Bayesian methods make explicit. Such disagree-
ments persist until there is sufficient information available to
convince the broader scientific community where the truth lies.
Many will prefer the comfort zone of p values, which have played
a valuable role in statistical analyses for many decades. But the
statistical world is changing, and it seems likely that Bayesian
methods will be playing an increasing role in the analysis of all
types of data, including psychological data.

In reporting his data, Bem (2011) presented a more pragmatic
argument for choosing the standard frequentist analysis:

There are, of course, more sophisticated statistical techniques avail-
able, . . . but they do not yet appear to be widely familiar to psychol-
ogists and are not yet included in popular statistical computer pack-
ages. . . . I have deliberately not used them for this article. It has been
my experience that the use of complex or unfamiliar statistical pro-
cedures in the reporting of psi data has the perverse effect of weak-
ening rather than strengthening the typical reader’s confidence in the
findings. . . . This is understandable. If one holds low Bayesian [prior]
probabilities about the existence of psi—as most academic psychol-
ogists do—it might actually be more logical from a Bayesian per-
spective to believe that some unknown flaw or artifact is hiding in the
weeds of . . . an unfamiliar statistical analysis than to believe that
genuine psi has been demonstrated. (p. 420)

Ironically, Wagenmaker et al.’s (2011) critique itself provides an
illuminating example of how hidden flaws or artifacts can lurk “in
the weeds” of an unfamiliar statistical analysis—albeit here in the
service of defending the null hypothesis.

Medieval maps used to mark unknown or unexplored territories
with the warning “Here Be Dragons.” Until a new generation of
psychologists becomes as familiar with the hidden traps of Bayes-
ian analyses as their mentors have become with those of frequen-
tist analyses, a similar warning would seem appropriate.
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