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The application of statistics to science is not a neutral act. Statistical tools have shaped and 
were also shaped by its objects. In the social sciences, statistical methods fundamentally 
changed research practice, making statistical inference its centerpiece. At the same time, text-
book writers in the social sciences have transformed rivaling statistical systems into an appar-
ently monolithic method that could be used mechanically. The idol of a universal method for 
scientific inference has been worshipped since the “inference revolution” of the 1950s. Because 
no such method has ever been found, surrogates have been created, most notably the quest for 
significant p values. This form of surrogate science fosters delusions and borderline cheating 
and has done much harm, creating, for one, a flood of irreproducible results. Proponents of the 
“Bayesian revolution” should be wary of chasing yet another chimera: an apparently universal 
inference procedure. A better path would be to promote both an understanding of the various 
devices in the “statistical toolbox” and informed judgment to select among these.
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No scientific worker has a fixed level of significance at which from year to year, and in all 
circumstances, he rejects hypotheses; he rather gives his mind to each particular case in the light 
of his evidence and his ideas.

—Sir Ronald A. Fisher (1956: 42)
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Cognition will require its authors to adhere to the convention that an effect described as 
“statistically significant” must have a p-value below .05 (for better or for worse, this is the 
current convention).

—Gerry T. M. Altmann, editor of Cognition (2007: 6)

If statisticians agree on one thing, it is that scientific inference should not be made 
mechanically. Despite virulent disagreements on other issues, Ronald Fisher and Jerzy 
Neyman, two of the most influential statisticians of the 20th century, were of one voice on 
this matter. Good science requires both statistical tools and informed judgment about what 
model to construct, what hypotheses to test, and what tools to use. Practicing statisticians rely 
on a “statistical toolbox” and on their expertise to select a proper tool; social scientists, in 
contrast, tend to rely on a single tool. In the words of psychologist Abraham Maslow (1966: 
15), “if all you have is a hammer, everything looks like a nail.”

Judging by their behavior, many social scientists vote with their feet against an informed 
use of inferential statistics. A majority compute p values all the time, a minority always com-
pute confidence intervals, and a few calculate Bayes factors, irrespective of the problem at 
hand. These routines are surprising, given that in most psychological experiments—unlike in 
election polls and quality control—researchers do not draw random samples from a popula-
tion or define a population in the first place. Thus, no one knows to what population an infer-
ence actually refers.

Determining significance has become a surrogate for good research. Francis Bacon 
(1620/1902) used the term worshipping idols for a specific and pernicious sort of error. In 
Bacon’s view, it is better to have no beliefs than to embrace falsehoods, because false idols 
block the way toward enlightenment. In the sciences, an idol provides a surrogate for the real 
object and requires from its worshippers delusions about its power (Daston, 2005).

This article is about the idol of a universal method of statistical inference. Advocated as 
the only game in town, it is practiced in a compulsive, mechanical way—without judging 
whether it makes sense or not. Here are a few illustrations.

Mindless Statistical Inference

In an Internet study on implicit theories of moral courage, participants were asked, “Do 
you feel there is a difference between altruism and heroism?” (Franco, Blau, & Zimbardo, 
2011: 107). The far majority felt so: 2,347 respondents said yes, while 58 said no. The authors 
computed a chi-square test to find out whether the two numbers differed significantly, which 
indeed they did: “The responses indicate that there is a significant perceived difference 
between the ideas of heroism and altruism, χ2(1) = 2178.60, p < .0001” (Franco et al., 2011: 
108).

In the same spirit, one of our students found that the means in his experimental and control 
group were exactly the same. Believing that it would be unscientific to simply report this, he 
was anxious to do a significance test. The t test revealed that the means did not differ signifi-
cantly, which he dutifully reported in his thesis.

One of us reviewed an article in which the number of subjects was reported as 57. The 
authors calculated that the 95% confidence interval was between 47.3 and 66.7 subjects. 
Every figure was scrutinized in the same way, resulting in three dozen statistical tests. The 
only numbers with no confidence intervals or p values attached were the page numbers.
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These cases illustrate the automatic use of a statistical procedure, reminiscent of an obses-
sive-compulsive disorder. Unfortunately, these are not the exception. Consider all behav-
ioral, neuropsychological, and medical studies with humans published in 2011 in Nature. 
Eighty-nine percent of these articles reported p values only—without providing information 
about effect size, power, or model estimation. In Science and Neuropsychology, 42% and 
32% did the same, respectively (Tressoldi, Giofré, Sella, & Cumming, 2013). One of our 
graduate students, Daniela Link, went through a top outlet, the Academy of Management 
Journal; in 2012, the estimated number of p values computed in an article was on average 99 
(median = 89), ranging from 0 to 578.1 Among the articles published during the 1980s in the 
American Economic Review, another flagship journal, 70% did not distinguish statistical 
significance from effect size, that is, economical significance. In the following decade, this 
percentage increased to 82% (Ziliak & McCloskey, 2004). Mindless mechanical statistics 
reigns.2

The idol of an automatic, universal method of inference, however, is not unique to p val-
ues or confidence intervals. As we will argue, it can invade Bayesian statistics as well. In fact, 
it appears to have done so already. For instance, Dennis Lindley, a leading advocate of 
Bayesian statistics, declared that “the only good statistics is Bayesian statistics” (1975: 106) 
and that “Bayesian methods are even more automatic” than Fisherian ones (1986: 6).

The Idol of a Universal Method of Inference

In this article, we make three points.

1.	 There is no universal method of scientific inference but, rather, a toolbox of useful statistical 
methods. In the absence of a universal method, its followers worship surrogate idols, such as 
significant p values. The inevitable gap between the ideal and its surrogate is bridged with 
delusions—for instance, that a p value of 1% indicates a 99% chance of replication. These 
mistaken beliefs do much harm: among others, by promoting irreproducible results.

2.	 If the proclaimed “Bayesian revolution” were to take place, the danger is that the idol of a 
universal method might survive in a new guise, proclaiming that all uncertainty can be reduced 
to subjective probabilities. And the automatic calculation of significance levels could be 
revived by similar routines for Bayes factors. That would turn the revolution into a re-volu-
tion—back to square one.

These first two points are not “philosophical” but have very practical consequences, 
because

3.	 Statistical methods are not simply applied to a discipline; they change the discipline itself, and 
vice versa. In the social sciences, statistical tools have changed the nature of research, making 
inference its major concern and degrading replication, the minimization of measurement error, 
and other core values to secondary importance.

Dreaming Up a Universal Method of Inference

In science and everyday life, statistical methods have changed whatever they touched 
(Gigerenzer, Swijtink, Porter, Daston, Beatty, & Krüger, 1989). In the 20th century, para-
psychology was transformed from what was originally the study of unique messages from 
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the dear departed into that of repetitive card guessing. The game of baseball turned into base-
ball statistics: Batting averages and runs scored became its new lifeblood, with journals such 
as Operations Research publishing articles on baseball science. For centuries, medicine was 
based on “medical tact” in relation to the individual patient, and doctors held a long-standing 
antagonism toward averages. By the late 20th century, the probabilities from randomized trials 
began to replace doctors’ intuitions, and causes were replaced by chances. Yet perhaps the 
most dramatic change brought about by statistics was the “probabilistic revolution”: In the 
natural sciences, the term statistical began to refer to the nature of theories, not to the evalua-
tion of data. In the social sciences, the reverse happened, with researchers dreaming up a 
universal method of inference—first in the form of p values during the “inference revolution” 
and nowadays in the form of Bayesian statistics as part of the proclaimed “Bayesian revolu-
tion.” To understand how the latest (Bayesian) version of the old dream of a universal method 
of inference emerged, it is helpful to go back to these two earlier revolutions.

How Statistics Changed Theories: The Probabilistic Revolution

The probabilistic revolution upset the ideal of determinism shared by most European 
thinkers up to 1800 (Krüger, Daston, & Heidelberger, 1987). During the 19th and 20th cen-
turies, it slowly made chance an indispensable part of our understanding of nature, from 
Darwinian variability and genetic recombination in biology to Brownian motion and radioac-
tive decay in physics. Together with the Copernican and Einsteinian revolutions, it is one of 
the great scientific revolutions. Yet it differs from the others in that it did not replace any 
system in its own field. What it did is upset theories in other fields outside of mathematics. 
For instance, in physics, Newton’s theory of simple cause and effect was replaced by the 
probabilistic causes in statistical mechanics and, eventually, by quantum theory.

Surprisingly, the social sciences inspired the probabilistic revolution in physics. When the 
founders of statistical mechanics, Ludwig Boltzmann and Clark Maxwell, tried to understand 
the erratic behavior of gas molecules, they used as their model laws guiding people, as for-
mulated by the Belgian social statistician Adolphe Quetelet. Quetelet had discovered that 
human behavior, such as murder und suicide, albeit unpredictable at the individual level, 
could be predicted at the collective level. The collective follows statistical laws, such as nor-
mal distributions. Boltzman and Maxwell applied the same laws to the behavior of gas mol-
ecules (Gigerenzer et al., 1989).

However, although the probabilistic revolution fundamentally changed theorizing in the 
natural sciences, the social and medical sciences were reluctant to abandon the ideal of sim-
ple, deterministic causes (Krüger, Gigerenzer, & Morgan, 1987). With few exceptions, social 
theorists hesitated to think of probability as more than an error term in the equation observa-
tion = true value + error. Whereas Darwinian variability is necessary for selection and adap-
tation, measurement errors are merely a nuisance. The Harvard psychologist Edwin Boring 
summarized the situation in psychology as late as in 1963 in two words: “Determinism 
reigns” (p. 14).

Notably, probability theory shaped the social sciences differently than it did the natural 
sciences. It became used for mechanizing scientists’ inferences rather than for modeling how 
nature works. This move promised objectivity because it replaced the subjectivity of experi-
menters’ judgments with an automatic method. Thereby, social scientists aimed to become as 
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objective as natural scientists, without threatening the prevailing determinism in theories 
(Gigerenzer, 1987).

How Statistics Changed Methods: The Inference Revolution

The term inference revolution (Gigerenzer & Murray, 1987) refers to a change in scientific 
method that was institutionalized in psychology and in other social sciences between 1940 
and 1955, first in the United States and subsequently in Europe and the rest of the world. The 
qualifier inference indicates that among all scientific tools—such as hypothesis formulation, 
systematic observation, descriptive statistics, minimizing measurement error, and indepen-
dent replication—the inference from a sample to population grew to be considered the most 
crucial part of research. As stressed above, this was a stunning new emphasis, given that in 
most experiments, psychologists virtually never drew a random sample from a population or 
defined a population in the first place.

This accent on significance also pushed key scientific tools into the background. In the 
natural sciences, replication is a necessary part of the research process, whereas in marketing, 
advertising, and related areas, journal editors deemed significance to be sufficient, arguing 
that replication “isn’t considered ‘creative’” and “doesn’t help get tenure or fame” (Madden, 
Easley, & Dunn, 1995: 79). In contrast to this dismissive attitude towards replication, W. S. 
Gosset of the Guinness brewery in Dublin, the father of the t test, considered small measure-
ment errors to be more important than small p values (Gigerenzer et al., 1989). After the 
inference revolution, however, few researchers were concerned with true measurement 
errors. Simply increasing the number N of subjects became a surrogate for minimizing errors: 
The square root of N in the t-test formula appeared to do the same job. In sum, the inference 
revolution made inference the dominant aspect of evaluating data. Although Bayesians cor-
rectly criticize p-value statistics, their focus is, once again, on inference.

Science Without Statistical Inference

To understand how deeply the inference revolution changed the social sciences, it is help-
ful to realize that routine statistical tests, such as calculations of p values or other inferential 
statistics, are not common in the natural sciences. Moreover, they have played no role in any 
major discoveries in the social sciences. Consider how Isaac Newton, the father of the first 
unified system of modern physics, practiced research. In his Opticks, Newton (1704/1952) 
advanced propositions about the nature of light, such as that white light consists of spectral 
colors. Then he reported in detail a series of experiments to test these. In other words, for 
Newton, an experiment meant putting in place a set of conditions, derived from a theory, and 
then demonstrating the predicted effect. Nowhere in his writings is sampling or statistical 
inference mentioned. However, Newton was not hostile to statistical inference. In his role as 
the master of the London Royal Mint, he had to make sure that the amount of gold in the 
coins was neither too little nor too large. For that problem, he relied on a sampling scheme 
named the Trial of the Pyx. The trial consisted of a sample of coins drawn and placed in a box 
known as the Pyx (derived from the Greek term for box), a null hypothesis to be tested (the 
standard coin), a two-sided alternative, a test statistic, and a critical region (Stigler, 1999). In 
Newton’s view, sampling and statistical inference were needed for quality control in a mint 
but not in science.
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Similarly, inferential statistics did not contribute to Watson and Crick’s discovery of the 
double helix or to Einstein’s special relativity theory. The same can be said for virtually all of 
the classical discoveries in psychology. You will not find Jean Piaget calculating a t test. 
Wolfgang Köhler developed the Gestalt laws of perception, Ivan P. Pavlov the principles of 
classical conditioning, B. F. Skinner those of operant conditioning, George Miller his magi-
cal number seven plus minus two, and Herbert A. Simon his Nobel Prize–winning work in 
economics—all without calculating p values, confidence intervals, or Bayes factors. This 
was not because they did not know statistical inference. It was known long ago.

First Test of a Null Hypothesis: Infer Divine Purpose

The first known test of a null hypothesis was by John Arbuthnott in 1710. It is strikingly 
similar to the “null ritual” (see below) that was institutionalized in the social sciences 250 
years later. Arbuthnott (1710) asked whether chance or divine planning was responsible for 
the slight excess of male versus female births. He observed that “the external Accidents to 
which Males are subject (who must seek their Food with danger) do make a great havock of 
them, and that this loss exceeds far that of the other Sex” (Arbuthnott, 1710: 188). To repair 
this loss, he argued, God brings forth more males than females, year after year. He tested this 
hypothesis of divine purpose against the null hypothesis of mere chance, using 82 years of 
birth records in London. In every year, the number of male births was larger than that of 
female births. Arbuthnott calculated the “expectation” of these data (D) if the hypothesis of 
blind chance—in modern terms, H0— were true as p(D|H0) = (1/2)82. Because this probabil-
ity was so small—p < .000001—he concluded that divine providence, not chance, rules. In 
his view, that empirically proved that God favors monogamy and “that Polygamy is contrary 
to the Law of Nature and Justice” (Arbuthnott, 1710: 189).

The first null hypothesis test impressed no one. That is not to say that statistical methods 
have played no role in the social sciences. Descriptive statistics have been essential for all 
empirical sciences, from astronomy to psychophysics, including methods of visualization 
and exploratory data analysis (Tukey, 1977). Descriptive statistics also provided the materi-
als for Karl Marx and other political reformers and set the grounds for modern bureaucracy. 
Numbers were essential for calculating employer contributions to sickness benefits, pension 
funds, and other elements of the first modern welfare state in Germany (Hacking, 1987). The 
term statistics itself probably stems from the needs of states to collect demographic and eco-
nomic data. Modern organizations, from Google to the National Security Agency, continue 
this long-standing business.

To summarize, statistical inference played little role and Bayesian inference virtually none 
in research before roughly 1940.3 Among the first to promote significance testing to make 
their claims look more objective were parapsychologists and educational researchers 
(Danziger, 1990). Automatic inference was unknown before the inferential revolution, with 
the exception of the use of the critical ratio (the ratio of the obtained difference to its stan-
dard deviation). The maxim back then was “A critical ratio of three, or no PhD.”

The Null Ritual

The most prominent creation of a seemingly universal inference method is the null 
ritual:
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1.	 Set up a null hypothesis of “no mean difference” or “zero correlation.” Do not specify the 
predictions of your own research hypothesis.

2.	 Use 5% as a convention for rejecting the null. If significant, accept your research hypothesis. 
Report the result as p < .05, p < .01, or p < .001, whichever comes next to the obtained p value.

3.	 Always perform this procedure.

In psychology, this ritual became institutionalized in curricula, editorials, and professional 
associations in the mid-1950s (Gigerenzer, 1987, 2004). In textbooks, it became dubbed “the 
backbone of psychological research” (Gerrig & Zimbardo, 2002: 46). Researchers are 
encouraged to apply this procedure automatically—by editors (see the epigram), textbook 
writers, and publication guidelines. For instance, the Publication Manual of the American 
Psychological Association (American Psychological Association, 1974: 19) warned its read-
ers, “Caution: Do not infer trends from data that fail by a small margin to meet the usual 
levels of significance. . . . Treat the result section like an income tax return. Take what’s com-
ing to you, but no more.”

Yet the null ritual does not exist in statistics proper. What does exist are conflicting theo-
ries of inference, most relevantly those of Fisher and Neyman-Pearson. Fisher, for instance, 
regarded Neyman’s position as “childish” and “horrifying [for] the intellectual freedom of 
the west” (Gigerenzer et al., 1989: 105). He branded the mechanical nature of Neyman-
Pearson’s tests as having grown from “the phantasy of circles rather remote from scientific 
research” (Fisher, 1956: 100). Neyman, in turn, replied that some of Fisher’s tests were 
“worse than useless” because their power is smaller than their alpha level (Stegmüller, 1973: 
2). One rarely finds a hint at this controversy in statistics textbooks written by social scien-
tists. As a result, the null ritual is confused with Fisher’s theory of null hypothesis testing. For 
example, it has become common to use the term NHST (null hypothesis significance testing) 
without distinguishing between the two. But contrary to what is suggested by that misleading 
term, level of significance actually has three different meanings: (a) a mere convention, (b) 
the alpha level, or (c) the exact level of significance.

Three Meanings of Significance

In his early work, Fisher (1935/1971) thought of the level of significance as a mere con-
vention: “It is usual and convenient for experimenters to take 5 per cent as a standard level of 
significance, in the sense that they are prepared to ignore all results which fail to reach this 
standard” (p. 13). (The reason for this convention appears to be that Fisher had tables for 5% 
and 1% only because his archenemy, Karl Pearson, refused to give him any others.) The 
convention became part of the null ritual.

But Neyman and Pearson rejected a mere convention in favor of an alpha level that 
required a rational scheme (Neyman, 1957). Here is a summary of their scheme: 

1.	 Set up two statistical hypotheses, H1 and H2, and decide on alpha, beta, and the sample size 
before the experiment, based on subjective cost-benefit considerations. 

2.	 If the data fall into the rejection region of H1, accept H2; otherwise accept H1. 
3.	 The usefulness of this procedure is limited among others to situations where there is a disjunc-

tion of hypotheses (e.g., either µ1 or µ2 is true), where there is repeated sampling, and where 
you can make meaningful cost-benefit trade-offs for choosing alpha and beta. 
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The alpha level is the long-term relative frequency of mistakenly rejecting hypothesis H1 
if it is true, also known as Type 1 error rate. The beta level is the long-term relative frequency 
of mistakenly rejecting hypothesis H2 if it is true (also known as Type 2 error rate or 1 – 
power). A typical application of Neyman-Pearson testing is industrial quality control. Here, 
a manufacturer calculates the required sample size of products that must be examined daily 
to detect eventual problems in the quality of products by balancing the costs of false positives 
(e.g., halting the production when there is, in fact, no quality issue) and false negatives (e.g., 
letting low-quality products slip through).

During his long controversy with Neyman and Pearson, Fisher eventually refined his ear-
lier position. The result was a third definition of level of significance, alongside convention 
and alpha level, the exact level of significance in Fisher’s (1955, 1956) null hypothesis 
testing: 

1.	 Set up a statistical null hypothesis. The null need not be a nil hypothesis (e.g., zero 
difference). 

2.	 Report the exact level of significance (e.g., p = .055 or .045). Do not use a conventional 5% 
level all the time. 

3.	 Use this procedure only if you know little about the problem at hand.

As can be seen, Fisher’s mature framework differs fundamentally from the null ritual: 
First, one should not automatically use the same level of significance (see the epigram), and 
second, one should not use this procedure for all problems. Now we can also understand the 
muddled anatomy of the null ritual. Step 1 of the ritual—setting up only a null—stems from 
Fisher. But it carries the misinterpretation that null means “nil,” such as a zero difference. 
This step contradicts Neyman-Pearson theory, where two statistical hypotheses need to be 
specified in order to be able to determine both alpha and beta. Power (1 – beta) is neverthe-
less mentioned in typical textbooks but cannot be determined in the context of the null ritual. 
Step 2—calculating the p value after the fact and rounding it up to p < .05, p < .01, or p < 
.001—is an odd compromise between Fisher’s (1955, 1956) and Neyman-Pearson’s logic 
that violates both. According to Neyman-Pearson, alpha needs to be determined before the 
data are obtained, and there can be only one alpha level, not three. According to Fisher, one 
should report the exact level calculated from the data but not round it up and report the 
rounded value as if it were a convention or an alpha level. In spite of that, scores of editors 
recommend reporting multiple levels of significance for one and the same analysis. For 
instance, the style guide for authors of the Academy of Management Journal (“Style Guide,” 
2011: 1083) explains how to report various “significance levels” (note the plural) and to 
award them one or more stars. Step 3 of the null ritual is the sole and unique creation of social 
scientists.

Bestselling Textbooks Sell a Single Method of Inference

The null ritual is an invention of statistical textbook writers in the social sciences. They 
became familiar with Fisher’s work first, mainly through his 1935 book, and only later 
with Neyman-Pearson theory. After learning about Neyman-Pearson, these writers (who 
were mostly nonstatisticians) had a problem: How should they deal with conflicting 
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methods? The solution would have been to present a toolbox of different approaches, but 
Guilford (1942), Nunnally (1975), and many others mixed the concepts and presented the 
muddle as a single, universal method. Indeed, the inference revolution was not led by the 
leading scientists. It was spearheaded by humble nonstatisticians who composed statistical 
textbooks for education, psychology, and other fields and by the editors of journals who 
found in “significance” a simple, “objective” criterion for deciding whether or not to accept 
a manuscript. For instance, in 1962, the editor of the Journal of Experimental Psychology 
stated that he had “a strong reluctance to accept and publish results” not significant at the 
.01 level, while the significant ones were worthy of being placed in the “archives” (Melton, 
1962: 553-554).

Some of the most prominent psychologists of their time vehemently objected. Stanley S. 
Stevens (1960: 276), the founder of modern psychophysics, complained about a “meaning-
less ordeal of pedantic computations.” R. Duncan Luce (1988: 582), one of the architects of 
mathematical psychology, spoke of a “wrongheaded view about what constituted scientific 
progress,” and Herbert A. Simon (1992: 159) made it clear that for his computer models, the 
“familiar tests of statistical significance are inappropriate.” You will not find such statements 
cited in the bestselling statistical textbooks in psychology.

The idol of a universal method (in the form of the null ritual) also left no place for Bayesian 
statistics. Nor did some publishers. A well-known author, whose name does not matter, had a 
chapter on Bayesian methods in the second edition of his bestselling textbook. When asked 
why he deleted this chapter in all further editions, he responded that it had been done at the 
request of his publisher. The publisher wanted a single method that can be applied by stu-
dents automatically rather than several methods that would demand discernment, because 
that would decrease sales. So the author acquiesced, deleting the chapter on Bayes and, along 
with it, the only sentence that hinted at a difference between Fisher and Neyman and Pearson. 
Asked about the statistical theory in which he himself believed, the author confessed that he 
was actually a Bayesian at heart. This case illustrates how sales, together with sacrifice of 
intellectual integrity, fueled the creation of the universal method of inference. In this way, 
textbook writers changed statistics.

Bayesianism and the New Quest for a Universal Method

The only good statistics is Bayesian statistics. Bayesian statistics is not just another technique to 
be added to our repertoire  .  .  . it is the only method that can produce sound inferences and 
decisions in multivariate, or any other branch of, statistics. (Lindley, 1975: 106)

It is usual to consider the logarithm of the Bayes factor, for which the so-called “Jeffreys’ scale” 
gives empirically calibrated levels of significance for the strength of evidence... (Trotta, 2007: 73)

Fisher and Neyman and Pearson have been victims of social scientists’ desire for a single 
tool, a desire that produced a surrogate number for inferring what is good research. Bayes 
could well be the next victim. The same idol that caused the neglect of Bayesian statistics 
might now promote it as the only game in town. The potential danger lies in the subjective 
interpretation of probability, which sanctions its universal application to all situations of 
uncertainty.
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A Short History of Bayesian Inference

The “Bayesian revolution” had a slow start. To begin with, the Reverend Thomas Bayes 
did not publish his celebrated paper—it was edited and submitted posthumously by Richard 
Price in 1763. The paper also contains no statement of Bayes’ rule, neither in its discrete nor 
its continuous form. When Bayes’ paper was eventually published, it was largely ignored, 
just as Arbuthnott’s paper before. If it had not been for Pierre Simon Laplace (1774), who 
stated Bayes’ rule without reference to Bayes, nobody today would visit Bayes’ burial site in 
Bunhill Fields, in the heart of the city of London. Little is known about Bayes, not even his 
year of birth, and the only portrait of him shown on hundreds of websites likely displays 
someone else (Fienberg, 2006). Stigler (1983) estimated a posterior probability of 3 to 1 that 
not Bayes, but Nicolas Saunderson, the Cambridge Lucasian Professor of Mathematics, dis-
covered what is known today as Bayes’ rule: posterior odds = likelihood ratio × prior odds, 
where the likelihood ratio p(D|H1)/p(D|H2) is also known as the Bayes factor.

Three Interpretations of Probability

Just as the null ritual has replaced three interpretations of level of significance with one, 
the currently dominant version of Bayesianism does the same with Bayesian pluralism, pro-
moting a universal subjective interpretation instead. But when the mathematical theory of 
probability was developed in the mid-17th century, there were three interpretations stemming 
from different applications (Daston, 1988). Probability was

(a)	  �a relative frequency in the long run, such as in mortality tables used for calculating insurance 
premiums;

(b)	  �a propensity, that is, the physical design of an object, such as that of a dice or billiard table 
(which Bayes used as an example); or

(c)	  �a reasonable degree of subjective belief, such as in the attempts of courts to quantify the reli-
ability of witness testimony.

In Bayes’ essay, his notion of probability is ambiguous and can be read in all three ways. 
This ambiguity, however, is typical for his time in which the classical theory of probability 
reigned—from the mid-17th to the early 19th century. The three interpretations were not 
clearly separated because the classical theory assumed that the beliefs of educated people 
mirrored objective frequencies (Daston, 1988). In Laplace’s famous phrase, probability the-
ory is “only common sense reduced to a calculus” (Laplace 1814/1951: 196). By 1840, how-
ever, the classical theory had lost its momentum, mathematicians dissociated their theory 
from degrees of belief, and the frequency interpretation of probabilities predominated 
(Gigerenzer et al., 1989). Only a century later—through the writings of the Italian statistician 
Bruno de Finetti, the British philosopher Frank Ramsey, and the American statistician 
Leonard Jimmie Savage—did subjective probability experience a renaissance.

A cornerstone of that resurrection is Edwards, Lindman, and Savage’s (1963) Psychological 
Review article. In it, they promoted Bayesian statistics instead of what they called classical 
statistics. For half a century, however, the article had virtually no impact on research method. 
At that time, the null ritual was already institutionalized, and delusions about the p value were 
in place, including the belief that the p value specifies the Bayesian posterior probability that 
the alternative hypothesis is correct—p(D|H) as surrogate for p(H|D) (Haller & Krauss, 2002).
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Universal Bayes

If probability is thought of as a relative frequency in the long run, it immediately becomes 
clear that Bayes’ rule has a limited range of applications. The same holds for propensity. The 
economist Frank Knight (1921) used the term risk for these two situations (i.e., probabilities 
that can be reliably measured in terms of frequency or propensity) as opposed to uncertainty. 
By contrast, the subjective interpretation has no limits. Subjective probability can be applied 
to situations of uncertainty and to singular events, such as the probability that Elvis is still 
alive. Whether that makes sense is another question. Savage (1954/1972: 27) himself was 
well aware of the problem: Many “are convinced that such statements about probability to a 
person mean precisely nothing, or at any rate that they mean nothing precisely.” Unlike many 
of his followers, Savage carefully limited Bayesian decision theory to “small worlds” in 
which all alternatives, consequences, and probabilities are known. And he warned that it 
would be “utterly ridiculous” to apply Bayesian theory outside a well-defined world—for 
him, “to plan a picnic” was already outside because the planners cannot know all conse-
quences in advance (Savage, 1954/1972: 16).

This modesty is foreign to a new generation of Bayesians who profess to follow Savage. 
Instead, they argue that Bayesianism is the only game in town. Earman (1992: 2) saw in this 
new dogmatism “the imperialistic ambitions of Bayesianism.” We will use the term Universal 
Bayes for the view that all uncertainties can or should be represented by subjective probabili-
ties, which explicitly rejects Knight’s (1921) distinction between risk and uncertainty. In 
Lindley’s (1983: 10-11) words,

the Bayesian paradigm concerns uncertainty. . . . It applies to statistical, repetitive situations. . . . 
But it is also applied to unique situations. We are uncertain about the inflation rate next year, the 
world’s oil reserves, or the possibility of nuclear accidents. All these can be handled by subjective 
probability.

As a consequence, Universal Bayes ignores the study of genuine tools for uncertainty. These 
include exploratory data analysis (Tukey, 1977), classification-and-regression trees 
(Breiman, Friedman, Olshen, & Stone, 1993), and fast-and-frugal heuristics (Gigerenzer, 
Hertwig, & Pachur, 2011).

Risk Versus Uncertainty

What Universal Bayesians do not seem to realize is that Bayesian theory can be optimal 
in a world of risk but is of uncertain value in an uncertain world, that is, when not all informa-
tion is known or can be known or when probabilities have to be estimated from small, unreli-
able samples. The same point can be made for frequentists. Indeed, under uncertainty, humans 
rely on simple tools, including the fast-and-frugal heuristics mentioned above, rather than 
trying to revise subjective probability distributions. And under uncertainty, simple heuristics 
are actually a better option, given that they can yield more accurate inferences than can com-
plex computational algorithms, including Bayesian ones (Gigerenzer et al., 2011). One can 
use computer simulations and formal analysis, grounded, for instance, in the bias-variance 
dilemma (Geman, Bienenstock, & Doursat, 1992), to specify when less complexity is more—
such as when a structural equation model with fewer parameters makes better predictions 
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than one with more parameters (Gigerenzer & Brighton, 2009). One can also use plain com-
mon sense to see that complex optimization algorithms are unreliable in an uncertain world. 
Take the financial crisis of 2008. The probability models used by banks, regulatory agencies, 
and rating firms were not the solution to the problem but were in fact part of the problem. 
They missed the crisis, yet created illusory certainty. As business magnate and billionaire 
George Soros (2009: 6) bluntly stated, “rational expectations theory is no longer taken seri-
ously outside academic circles.” But in our experience, Universal Bayesians tend to take no 
notice of these results and simply assert that all problems could be best handled by subjective 
probability, if only the right priors are found. Weick (1996) made the more general point that 
if scholars or organizations are fixated on “heavy tools,” they may become inflexible and fall 
behind.

Automatic Bayes

As with the null ritual, the universal claim for Bayes’ rule tends to go together with its 
automatic use. In the words of Lindley (1983: 2),

the Bayesian paradigm provides rules of procedure to be followed. I like to think of it as providing 
a recipe: a set of rules for attaining the final product. The recipe goes like this. What is uncertain 
and of interest to you? Call it θ. What do you know? Call it D, specific† to the problem, and H, 
general. Then calculate p(θ|D, H). How? Using the rules of probability, nothing more, nothing 
less.

One version of Automatic Bayes is the mechanical interpretation of Bayes factors, using 
Jeffreys’ (1961) scale or similar interpretation aids independent of context (e.g., B10 > 100 = 
“decisive evidence against H0”). Ironically, some of the most-cited propagators of such scales 
(Kass & Raftery, 1995) point out that this should not be done. Others do not seem to mind 
mechanical inference (see epigram above).

A second version of Automatic Bayes can be found in the heuristics-and-biases research 
program—a program that is widely taught in business education courses. One of its conclu-
sions is that the mind “is not Bayesian at all” (Kahneman & Tversky, 1972: 450). Instead, 
people are said to ignore base rates, which is called the base rate fallacy and attributed to 
cognitive limitations. According to these authors, all one has to do to find the correct answer 
to a textbook problem is to insert the numbers in the problem into Bayes’ rule—the content 
of the problem and content-related assumptions are immaterial. The consequence is a 
“schizophrenic” split between two standards of rationality: If experimental participants failed 
to use Bayes’ rule to make an inference from a sample, this was considered irrational. But 
when the researchers themselves made an inference about whether their participants were 
Bayesians, they did not use Bayes’ rule either. Instead, they went through the null ritual, rely-
ing only on the p value. In doing so, they themselves committed the base rate fallacy. What 
is more, subsequent studies revealed that this form of Automatic Bayes mistakes people’s 
good statistical intuitions for cognitive illusions. For instance, participants turned out to be 
sensitive to relevant assumptions, such as random drawing, whereas researchers who used 
Automatic Bayes were not (e.g., Gigerenzer, Hell, & Blank, 1988). Moreover, there are mul-
tiple alternative Bayesian solutions and Neyman-Pearson solutions to the textbook problems 
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used in this research and not just one, as asserted by Tversky, Kahneman, and their followers 
(Gigerenzer & Murray, 1987).

In short, an automatic use of Bayes’ rule is a dangerously beautiful idol. But even for a 
devoted Bayesian, it is not a reality: Like frequentism, Bayesianism does not exist in the 
singular. According to the mathematician I. J. Good (1971), there are 46,656 varieties of 
Bayesianism. These differ in beliefs, such as that physical probabilities (propensities or rela-
tive frequencies) (a) exist, (b) do not exist, or (c) should be used as if they exist, without 
philosophical commitment.

Toward a Statistical Toolbox

In our view, the alternative to Universal and Automatic Bayes is to think of Bayesian sta-
tistics as forming part of a larger toolbox. In the toolbox view, Bayes’ rule has its value but, 
like any other tool, does not work for all problems.

One of the most useful und least controversial uses of Bayes’ rule is in medical diagnosis. 
As long as the prior odds are based on relative frequencies from epidemiological studies, 
Bayes’ rule can provide useful estimates for the probability of disease given a positive test. 
Yet most physicians do not know how to use it and are confused by conditional probabilities. 
The best method for helping physicians learn to think the Bayesian way is to teach them how 
to translate conditional probabilities into natural frequencies (Gigerenzer, 2011). Consider a 
disease (= hypothesis) H and a positive test (= data) D, with p(H) = .01, p(D|H) = .80, and 
p(D|¬H) = .04. Few doctors can infer the posterior probability p(H|D) from these probabili-
ties. To represent them in natural frequencies, one starts with, say, 1,000 patients. We expect 
that 10 have the disease, 8 of which test positive, and among the 992 without the disease, we 
expect another ≈40 to test positive. Now it is easy to see that 8 of the 48 who test positive 
actually have the disease, which translates into p(H|D) = .17. Today, major medical organiza-
tions, such as the Cochrane Collaboration and the Medicine and Healthcare Products 
Regulatory Agency of the United Kingdom, recommend using natural frequencies.

However, even frequency-based probabilities are not universally accepted. Take the cred-
ibility of eyewitness testimony in court, which was the historical origin of the subjective 
interpretation of probability in the 17th century. Not every eyewitness is trustworthy, and so 
one tried to quantify the probability that a witness is telling the truth (Daston, 1988). Despite 
this historical relation between probability and the law, to the present day, legal professionals 
often do not understand statistical evidence—for instance, DNA fingerprinting and wife bat-
tering in the O. J. Simpson case (Gigerenzer, 2002: chaps. 8-10). Most important, courts in 
the United States and Great Britain have often resisted the introduction of Bayes’ rule 
(Koehler, 1992). Prior probabilities other than zero are considered inconsistent with the pre-
sumption of innocence. And for many legal systems, statistical justice is a contradiction in 
terms because it replaces the individual with averages, the individual case with a generality, 
and, most important, the exercise of judgment with the application of automatic rules 
(Gigerenzer et al., 1989).

In the social sciences, objections to the use of Bayes’ rule are that frequency-based prior 
probabilities do not exist, that the set of hypotheses needed for the prior probability distribu-
tion is not known, and that researchers’ introspection does not confirm the calculation of 
probabilities. Few researchers report that they consider the set of all plausible hypotheses and 
attach probabilities to these, summing up to 1. Fisher thought that prior probabilities were 
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meaningful only when they can be empirically estimated, which is rare for scientific hypoth-
eses. In his opinion, Bayes “deserves honourable remembrance” for realizing the limits of his 
approach and “perhaps, for the same reason, [for deciding] to withhold his entire treatise 
from publication” (Fisher, 1935/1971: 6). Moreover, as has been pointed out by Herbert A. 
Simon, scientists do not assign cardinal numbers to subjective probabilities in an uncertain 
world. Instead, they rely on fast-and-frugal heuristics that are robust in the many situations 
in which the assumptions for Bayes’ rule are not met (e.g., Simon, 1979; Gigerenzer et al., 
2011). The null ritual provides, in a negative sense, testimony to this: It can be seen as the 
mindless institutionalization of a single, simple rule.

In sum, unlike those who worship the idol of a universal method, we argue that Bayes’ 
rule is useful as part of a statistical toolbox, for instance, when priors can be reliably esti-
mated, as in medical diagnosis based on epidemiological studies. Neyman and Pearson’s 
decision theory, like Wald’s sequential decision theory, is appropriate for repeated random 
drawing situations in quality control, such as in Newton’s work as the master of the Royal 
Mint. Fisher’s null hypothesis testing is another tool, relevant for situations in which one 
does not understand what is happening, such as when precise alternative hypotheses cannot 
be specified. This statistical toolbox contains not only techniques of inference but—of equal 
importance—descriptive statistics, exploratory data analysis, and formal modeling tech-
niques as well. The only items that do not belong in the toolbox are false idols.

How Statistics Change Research—Surrogate Science

As a young man, Gottfried Wilhelm Leibniz (1677/1951) had a dream: to discover the 
calculus that could map all ideas into symbols. Such a universal calculus would put an end to 
all scholarly bickering—if a dispute arose, the contending parties could settle it peacefully by 
saying, “Let’s sit down and calculate.” Leibniz optimistically guessed that a few skilled per-
sons might be able to complete the whole thing in five years. Yet neither he nor anyone else 
has succeeded.

Leibniz’s dream is nonetheless still alive in the social sciences. Because the object of the 
dream has not been found, surrogates serve in its place. In some fields, it is the routine use of 
significance; in others, Bayesian statistics. We use the term surrogate science in a more gen-
eral sense, indicating the attempt to infer the quality of research using a single number or 
benchmark. The introduction of surrogates shifts researchers’ goal away from doing innova-
tive science and redirects their efforts toward meeting the surrogate goal. Let us give a few 
examples.

Statistical Inference as Surrogate for Replication

A significant p value does not specify the probability that the same result can be repro-
duced in another study. That can easily be seen from the fact that a p value, that is, the prob-
ability p(D|H0), is not the same as p(D), the probability of the data. Nevertheless, in the minds 
of some, the p value has become a surrogate for replicability: If p = .01, then the probability 
is .99 that another significant result will be obtained in a replication. Studies reported that this 
delusion was believed to be true by about half of psychology department teachers (Haller & 
Krauss, 2002; Oakes, 1986). Textbooks have also spread this delusion, known as the replica-
tion fallacy (Gigerenzer, 2004).
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Consistent with its surrogate function, journal articles report few replications in compari-
son to the number of p values. An analysis of 835 empirical articles sampled from the Journal 
of Marketing, the Journal of Marketing Research, and the Journal of Consumer Research 
found no single straight replications and in only 2.4% of them replications with extensions 
(Hubbard & Armstrong, 1994). An analysis of 1,046 research articles in the Journal of 
Consulting and Clinical Psychology, Journal of Counseling Psychology, and Personnel and 
Guidance Journal revealed that 86% used statistical tests of significance, 94% of these 
rejected the null at p < .05 or less, but fewer than 1% of them were replications (Bozarth & 
Roberts, 1972).

Traditional p values are not the only surrogates for real replications: For some time, the 
editors of Psychological Science even recommended that researchers routinely report p-rep, 
a mere transformation of the p value, in order to estimate the “probability of replicating an 
effect” (“Information for Contributors,” 2005: i). Advocates of Bayesian statistics rightly 
criticized this delusion but called instead for automatic Bayes factors: “It should be the rou-
tine business of authors contributing to Psychological Science or any other Journal of scien-
tific psychology to report Bayes Factors” (Iverson, Lee, Zhang, & Wagenmakers, 2009: 201).

Inferential statistics have become surrogates for real replication. The consequence is a 
flood of irreproducible results. Analyses of replications in management, finance, and adver-
tising journals showed that 40% to 60% of these contradicted the results of the original stud-
ies (see Hubbard & Armstrong, 1994). Scientists at Amgen were unable to replicate 47 out of 
53 major oncological findings for potential drug targets, nor were researchers at Bayer able 
to replicate 43 out of 67 oncological and cardiovascular findings (see Ioannidis et al., 2014). 
Psychologists have encountered similar surprises when trying to replicate “significant” 
findings.

Hypotheses Finding Is Presented as Hypotheses Testing

If the mean number of p values in an article is 99 (see introduction), warning bells should 
ring. For one, the authors may have disguised hypothesis finding as hypothesis testing, a 
practice known as fishing expeditions. Unfortunately, to the present day, many researchers 
first look at the data for patterns, check for significance, and then present the result as if it 
were a hypothesis test (Kerr, 1998). SPSS and other user-friendly software packages that 
automatically run tests facilitate this form of scientific misconduct: A hypothesis should not 
be tested with the same data from which it was derived. Finding new patterns is important, 
but p values or confidence intervals should not be provided for these. The same argument 
holds for subgroup tests after the fact (e.g., controlling for gender or gender interactions; P. 
Good & Harding, 2003) as well as for Bayesian methods that use the data to estimate the 
prior after the data have been seen. A similarly bad practice, common in management, educa-
tion, and sociology, is to routinely fit regressions and other statistical models to data, report 
R2 and significance, and stop there—without subjecting the results to actual tests via cross-
validation or other model selection procedures.

We propose a simple rule of thumb—let’s call it the f-index—to infer the extent f of fish-
ing expeditions disguised as hypothesis testing: f = nt/nh, where nh is the number of hypoth-
eses stated in an article and nt is the number of statistical tests, such as the number of reported 
p values or confidence intervals. If f = 1, there is no sign of a fishing expedition; if f > 1, there 
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is. The f-index is a conservative estimate because nonsignificant p values or confidence inter-
vals including the zero, looked up after the fact, may not be reported. The f-index is also 
relevant for Bayesian statistics when researchers use software packages that automatically 
churn out Bayes factors.

In sum, routine statistical inference has become a surrogate for both hypothesis finding 
and replication. The surrogate goal is to obtain a significant p value or other test statistic, 
even when it is out of place, as in the case of hypothesis finding.

Quantity as Surrogate for Quality

Surrogate science does not end with statistical tests. Research assessment exercises tend 
to create surrogates as well. Citation counts, impact factors, and h-indices are also “inferen-
tial statistics” that administrators and search committees may (ab)use to infer the quality of 
research. Just as statistical software (e.g., SPSS, STATA) facilitates computing p values and 
Bayes factors, digital media (e.g., Google Scholar, Web of Knowledge) make surrogates eas-
ily accessible.

The evident danger is that hiring committees and advisory boards study these surrogate 
numbers rather than the papers written by job candidates and faculty members. If being cited 
meant being read, citation statistics might well be a useful criterion. Yet a study estimated 
that of the articles cited, only 20% had actually been read (Simkin & Roychowdhury, 2003). 
With citation as a surrogate for quality, some truly original work may go unheeded. For 
instance, the most important publication in 20th-century biology, Watson and Crick’s paper 
on the double helix, was rarely cited in the first 10 years after its publication (Olby, 2003). 
Innovative ideas take time to be appreciated.

An even greater danger is that surrogates transform science by warping researchers’ goals. 
If a university demands publication of X journal articles for promotion, this number provides 
an incentive for researchers to dissect a coherent paper into small pieces for several journals. 
These pieces are aptly called just publishable units. Peter Higgs, the 2013 Nobel Prize winner 
in physics, once said in an interview, “Today I wouldn’t get an academic job. It’s as simple 
as that. I don’t think I would be regarded as productive enough” (Aitkenhead, 2013). He 
added that because he was not churning out papers as expected at Edinburgh University, he 
had become “an embarrassment to the department when they did research assessment exer-
cises” (Aitkenhead, 2013).

Conclusion: Leibniz’s Dream or Bayes’ Nightmare?

Surrogate science, from the mindless calculation of p values or Bayes factors to citation 
counts, is not entirely worthless. It fuels a steady stream of work of average quality and keeps 
researchers busy producing more of the same. But it makes it harder for scientists to be inno-
vative, risk taking, and imaginative.

Even worse, by transforming researchers’ goals, surrogates also encourage cheating and 
incomplete or dishonest reporting. In a survey of over 2,000 academic psychologists at major 
U.S. universities, almost half admitted to having selectively reported studies that “worked.” 
Equally alarming, more than half admitted having decided whether to collect more data after 
having examined whether the results were significant (John, Loewenstein, & Prelec, 2012). To 
illustrate the consequences, a researcher who has already collected 10 observations in each of 
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two conditions and now conducts a t test after each new observation (per condition) can obtain 
a false-positive result (p ≤ .05) 22% of the time (Simmons, Nelson, & Simonsohn, 2011). 
Selection of correlations after the fact appears to be common practice in social neurosciences, 
resulting in “voodoo correlations” (Vul, Harris, Winkielman, & Pashler, 2009: 274)—correla-
tions between brain activity and psychological measures that are higher than they can possibly 
be, given the limited reliability of the measures. These practices are not outright fraud but bor-
derline cheating. Yet they are likely a greater hindrance to progress than fraud, which is com-
paratively rare. Their product is an impressive flood of “significant” but irreproducible results.

Would a Bayesian revolution lead to a better world? The answer depends on what the 
revolution might be. As with the methods of Fisher and Neyman and Pearson, the real chal-
lenge in our view is to prevent the same surrogates from taking over once again, such as 
when replacing routine significance tests with routine interpretations of Bayes factors. 
Otherwise, Leibniz’s beautiful dream of a universal calculus could easily turn into “Bayes’ 
nightmare.” Editorials such as that by Altmann (2007: 6), cited in the epigram to this article, 
could be easily rewritten in favor of the old idol:

Cognition will require its authors to adhere to the convention that an effect evidence described as 
“statistically significant” “very strong” must have come with a p value below .05 Bayes factors 
30–100 for H0 and 1/100–1/30 for H1 (for better or for worse, this is the current convention).

Much ink has been spilled by Bayesians in criticizing frequentists, and vice versa. But the 
true enemy lies within each of the fighting parties. It is the idol of a universal method of 
scientific inference.

Notes
1. This analysis includes all empirical articles, be they qualitative or quantitative.
2. Mechanical reporting of p values is fortunately not everywhere. Back in 1988, the guidelines of the 

International Committee of Medical Journal Editors instructed, “Avoid sole reliance on statistical hypothesis testing, 
such as the use of p values” (p. 402). And in 1998, Rothman, the editor of Epidemiology, stated, “When writing for 
Epidemiology, you can also enhance your prospects if you omit tests of statistical significance. . . . Every worthwhile 
journal will accept papers that omit them entirely. In Epidemiology, we do not publish them at all” (p. 334).

3. For instance, in the 19th century, significance tests were occasionally used in astronomy—but typically for 
rejecting observations (outliers), not hypotheses (Gigerenzer, Swijtink, Porter, Daston, Beatty, & Krüger, 1989). 
This illustrates that statistical tests can be used for two different purposes. One is to trust in a hypothesis (such as in 
a normal distribution of observational errors around the true position of a star) and reject observations that deviate 
too far from it, possibly caused by a distracted or tired observer. The second is the reverse: to trust in the observa-
tions and reject hypotheses that deviate too far from them. The latter has become virtually the only use of statistical 
inference in the social sciences. Unlike astronomers, social scientists approach the question of outliers by applying 
subjective judgment, not statistical inference.
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