INTRODUCTION

“‘Alice laughed. ‘There’s no use trying,’ she said. ‘One can’t believe impossible things.’ ‘I daresay you haven’t had much practice,’ said the Queen. ‘When I was your age, I always did it half an hour a day. Why, sometimes, I’ve believed as many as six impossible things before breakfast.’”

Lewis Caroll, *Alice in Wonderland*

Every psychology researcher is familiar with significance testing based on *p*-values. Despite the controversies surrounding significance testing, *p*-values are still hailed in psychology, in the sense that they abound and flourish. In this article, I emphasize problems with *p*-values that are often overlooked within psychology. Researchers collect data and these data can be considered as statistical evidence for/against statistical hypotheses (hypotheses concerning parameter values, such as a population mean). In psychological research *p*-values are typically treated as representing statistical evidence given by data, but quantifying statistical evidence in the form of *p*-values results in several major problems, not easily disposed of. Commonly suggested additions to *p*, such as effect size and confidence intervals, are not up to the task either. If the objective is to quantify statistical evidence (and judging from research articles, it often is) it is recommended that researchers use likelihood ratios (cf. Royall, 1997), rendering *p*-values more or less practically obsolete.

Significance testing based on *p*-values, and whether using it as an index of evidence hails the impossible, has been a subject of controversy for a long time (Berger & Sellke, 1987; Carver, 1978; Cohen, 1994; Cornfield, 1976; Edwards, 1972; Harlow, Mulhaik & Steiger, 1997; Krantz, 1999; Neyman & Pearson, 1933). Unfortunately, psychologists frequently misunderstand what *p*-values are and what they may consistently be used for (Gigerenzer, 1993, 2004; Haller & Krauss, 2002; Hubbard & Armstrong, 2006; Wagenmakers, 2007). When peculiarities about *p* are noted in the psychological literature, focus is often directed to the less interesting and less devastating properties or problems of significance testing, such that 0.05 is an arbitrary threshold (Rosnow & Rosenthal, 1989), or that *p* does not indicate effect size or the posterior probability of a hypothesis (Cohen, 1994).

It is surprising that textbooks of statistics in psychology do not incorporate more fundamental controversies of and alternatives to significance testing, such as likelihood theory and Bayesian statistics. If they did, students would be in a better position to understand what *p* is, what it is not, what it is based on, and how it could be used consistently. The exclusion of alternative fundamental statistical perspectives while relying overly on the classical ones is difficult to motivate rationally, because different statistical perspectives and schools provide answers to different questions (Blume, 2002; Dienes, in press; Royall, 1997). Actual research is affected by the overrepresentation of classical methods, because (1) classical methods may provide answers to questions that are arguably not of main interest and (2) the eager young minds of today are the settled old minds of tomorrow, effectively perpetuating a problematic state of affairs. In psychology, we have practiced a lot to believe impossible things. Perhaps the time is ripe to be done with it. Perhaps the Queen should be overthrown.

There are three main parts in this article. First, significance testing and *p*-values are introduced and discussed along with the classical evidential interpretation of *p*-values. In this context, several serious problems with the *p*-value as an index of statistical evidence are discussed. Second, the relation between *p*-values, long-term decision error control, and statistical evidence is discussed. In this context, it is emphasized that decision error control is distinct from the strength of evidence in obtained data. Third and finally, likelihood ratios are introduced and illustrated as an alternative to the *p*-value in order to quantify statistical evidence.
Significance testing involves the act of computing a *p*-value; evaluate the *p*-value, and then things tend to get messy. Let us withhold the mess for a second and simply consider the act of computing a *p*-value.

Formally, a *p*-value is simply a certain part of the sampling distribution associated with a test statistic for a set of sampling assumptions. An example will help.

Suppose we conduct a memory test on 50 punk rock musicians who have not had a beer in five weeks. Their mean (M) score is 1.40. For simplicity (without loss of generality), assume that we know that among punk rock musicians in general (the ones who drink beer most of the time), scores on the test are distributed normally with a mean (μ) of 0.00 and a standard deviation (σ) of 0.00.

Imagine that we repeatedly and infinitely sample 50 scores from the punk-rock-in-general-distribution and compute a mean score for each sample. By the central limit theorem, the resulting distribution of means will be normally distributed, have a mean μM = μ = 0.00, and a standard deviation σM = σ/√N = 0.00/√50 ≈ 0.85. The distribution of means is called the sampling distribution of the mean and its standard deviation is called the standard error of the mean.

We can compute, in terms of the standard error, how much our obtained mean M = 1.40 differs from the mean of the sampling distribution by calculating a z-score, z = (M − μM)/σM = (1.40 − 0.00)/0.85 ≈ 1.65. For a normal distribution we can determine the proportion of scores that fall at or beyond the obtained z-score of 1.65, which defines our *p*-value, *p* = 0.049 (one-tailed, in this case). This is shown in Fig. 1.

So, if our beer-deprived punk rock musicians really were a sample from a normally distributed population with the same mean and standard deviation as the beer-drinking punk rock musicians, then the probability of observing a mean score of 1.40 or more positively extreme than 1.40 is 0.049.1 This may or may not make us inclined to think that punk rock musicians would nail the lyrics to a larger extent if they deferred their Heineken until after the show.

What about *p*?

What do we do with our *p* = 0.049? The standard consequence is to reject the null hypothesis which in our example, according to standard procedures, would be the statistical hypothesis that the population mean for punk rockers who drink beer is the same as the population mean for punk rockers who do not drink beer. Why does this rejection of the null take place?

There are two standard answers to the Why question. One answer (the Fisherian) is that we reject the null because we have obtained evidence against the null. It would be unlikely to observe results such as ours (M = 1.40) or more extreme results (M > 1.40) if the null is true and therefore we have evidence against the null. The other answer (the Neyman–Pearsonian) is that we reject the null because our test statistic falls within a particular specified region of the sampling distribution which allows us to control the extent to which we make the wrong decision in the long run in a specific optimal way, provided that we have specified an alternative hypothesis as well (that we would have rejected had the test statistic not fallen within the specified region). Let us have a look at both answers.

p AND EVIDENCE

First, consider the Fisherian interpretation, associated with the work of Sir Ronald Fisher. Although Fisher vacillated between somewhat different interpretations of *p* in the context of significance testing over the years (Gigerenzer, 1993), it is clear that most of the time Fisher regarded *p* as providing a measure of evidence against the null hypothesis. For example, we are told that “the probability integral [i.e., the *p*-value]…would give, with any degree of accuracy required, the probability, on that hypothesis, that a greater discrepancy should occur than that actually observed. If the value of *P* so calculated turned out to be a small quantity such as 0.01, we should conclude with some confidence that the hypothesis was not in fact true of the population actually sampled” (Fisher, 1925, p. 41). We are also told that “It is open to the experimenter to be more or less exacting in respect of the smallness of the probability he would require before he would be willing to admit that his observations have demonstrated a positive result” (Fisher, 1935, p. 13).

Fisher expressed the idea that it is the smallness of the probability of the data and more extreme data under a given hypothesis (the null) that constitutes evidence against the hypothesis and is the *reason* for our potentially rejecting it. It is difficult not to consider Fisher’s view as an expression of *p* as a measure of evidence against the conditioned hypothesis and this view became even more outspoken later in his career when he suggested that researchers provide the exact *p*-value (rather than *p* < 0.05) in their reports (Fisher, 1956). Or, in the words of more recent scholars: “Can there be any doubt that God views the strength of evidence for or against the null as a fairly continuous function of the magnitude of *p*?” (Rosnow & Rosenthal, 1989).

For Fisher, the *exact* value of *p* matters a great deal, because it is supposed to be a *property of the data* (and more extreme data) that carries *evidential value*. Although Fisher did consider a level of significance of 0.05 for *p* early on (Fisher, 1935), this was more of a conventional standard for a heuristic evidential cut-off and
depends on unobserved
is about probability of is conditioned solely on
p
true, then
p
true (Rouder, Speckman, Sun, Morey & Iverson, 2009). If the null
expected 10% of the time,
the null hypothesis. Fisher (1935) was very much aware of this
always for the right reasons, is that
One problem which psychologists often do note, although not
DEFCON 4: p and the null
One problem which psychologists often do note, although not always for the right reasons, is that \(p \) cannot be used as evidence for the null hypothesis. Fisher (1935) was very much aware of this and the reason is that, for \(p \)-values to function the way they do, they have to be uniformly distributed when the null hypothesis is true (Rouder, Speckman, Sun, Morey & Iverson, 2009). If the null is true, then \(p \leq 0.05 \) is expected 5% of the time, \(p \leq 0.10 \) is expected 10% of the time, \(p \leq 0.15 \) is expected 15% of the time and so on. In effect, if the null is true then all \(p \)-values (and all equally sized ranges of \(p \)-values) are equally probable, implying that you cannot use the largeness of \(p \) as evidence for the null. The fact that \(p \) is uniformly distributed under the null also implies that if you keep collecting data when the null is true and calculate new \(p \)-values as the data accumulates, then you can find as small \(p \)-values as you wish for. All you need is patience, but sooner or later you will end up with, say, \(p < 0.00001 \).

Fisher rejected the concept of statistical power, so for Fisher the motivation for not using \(p \)-values as evidence for the null had nothing to do with statistical power. The motivation that many psychologists have for not accepting the null is, in my view, often based on a suspected lack of statistical power. But, if you buy the concept of statistical power, then you are no longer in the realm of Fisherian evidence, but in the Neyman–Pearson realm of decision error control (discussed in more detail further ahead in this article). Statistical power can in principle be achieved to the point where one may “safely” accept the null (in the sense of acting as if it was true) over an alternative hypothesis specifying a very small effect, in the sense that the long-term risk of making the wrong decision when the effect is there is very small, say, 1% (although note that when the null is true, alpha or the Type I error rate usually remains fixed even with increasing sample size). However, that safety is granted through properties of the decision procedure, not properties of the data. Fisherian evidential \(p \)-values, irrespective of how large they are, do not constitute evidence for the null because their distribution does not change with increasing sample size when the null is true and the \(p \)-value itself is conditioned only on the truth of the null.

DEFCON 3: p, the null, and the null only
The fact that \(p \)-values are conditioned on the truth of the null (a \(p \)-value is the probability of the obtained or more extreme data assuming the null is true) and the null only (no other hypothesis is required to generate a \(p \)-value) introduces a second problem, if one is inclined to interpret \(p \)-values as evidence. The problem is that because evidence is a relative concept (Goodman & Royall, 1988; Royall, 1997) there is no way for \(p \)-values to constitute evidence for anything, because computing them does not involve any other hypothesis than the null. Evidence is always relative in the sense that data constitute evidence for or against a hypothesis, relative to another hypothesis. That is, data are not evidence for or against a hypothesis taken in isolation, although it may be the case that the data constitute evidence for a hypothesis relative to all alternatives considered.

Suppose I randomly draw a card from a deck. It is the king of hearts. On the hypothesis that the deck was a regular deck the probability of the outcome is about 0.02. For most people, \(p = 0.02 \) signifies a quite improbable outcome. Do you consider the king of hearts evidence against the hypothesis that the deck is regular? Chances are that you do not, which shows that the occurrence of an improbable outcome given a hypothesis does not constitute evidence against the hypothesis. If there is no additional hypothesis on the table then there is no way for us to consider the draw of a king of hearts as evidence against a regular deck. A draw of any particular card is neither evidence for nor evidence against a regular deck in general. Only if an additional hypothesis is given can we consider the draw as evidence. For example, a draw of a king of hearts is evidence for a deck consisting only of kings of hearts relative to a regular deck (cf. Goodman & Royall, 1988), because the draw is much more likely under the trick deck hypothesis (but if your belief in that hypothesis was very weak before the draw, it may still be very weak after the draw, after being updated through Bayes’ theorem).

The important point here is that \(p \)-values correspond exactly to the deck scenario, because the calculation of \(p \)-values only and always involves one hypothesis, the null. The evidential interpretation of \(p \)-values is thus just as problematic as the evidential interpretation of the deck scenario, because \(p \)-values (if interpreted in evidential terms) imply an evidential concept whereby data constitute evidence against a hypothesis in general rather than against a hypothesis relative to another. A quick retort to the classic alternative hypothesis as specified in the Neyman–Pearson framework does not per se solve this problem, because the \(p \)-value itself is always conditioned solely on the null. (As discussed further ahead, the Neyman–Pearson framework escapes the problem by not being about evidence, embedding the use of \(p \) in a formal decision procedure.)

Table 1. Four fundamental problems with \(p \)-values as a measure of evidence and the resulting consequences

<table>
<thead>
<tr>
<th>Problem</th>
<th>Consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p) is uniformly distributed under the null</td>
<td>(p) cannot indicate evidence for the null</td>
</tr>
<tr>
<td>(p) is conditioned solely on the null</td>
<td>(p) does not quantify evidence, which is relative</td>
</tr>
<tr>
<td>(p) is about probability of obtaining evidence</td>
<td>(p) does not quantify strength of evidence</td>
</tr>
<tr>
<td>(p) depends on unobserved data and intentions</td>
<td>(p) does not quantify evidence from observed data</td>
</tr>
</tbody>
</table>
DEFCON 2: p, the null, the null only, and probability, not strength

The previous paragraph points toward a general third problem concerning the relation between p and the concept of evidence. When we say that these data provide some degree of evidence for hypothesis H1 (relative to, say, hypothesis H2), we presumably take this to mean that the degree designates a certain level of strength. The evidence could have been weaker or it could have been stronger and what we have obtained falls somewhere on the scale. Using p as an indicator of evidential strength confuses the relative strength of evidence (for one hypothesis compared to another) with the probability of obtaining that (or more extreme) evidence (given only one hypothesis) (Dienes, 2008; Royall, 1997). Identical p-values, if consistent as a measure of evidence, should always convey the same evidential strength, but they do not (Hubbard & Lindsay, 2008; Royall, 1997; Wagenmakers, 2007). For example, identical p-values in studies with different sample size do not have the same evidential meaning and statisticians have long argued about exactly which, if any, interpretation is correct (Royall, 1986). More generally, as noted in the previous paragraph, the probability of obtaining evidence given a hypothesis will not translate into strength of evidence if an alternative probability is absent, and for p-values the alternative is always absent.

DEFCON 1: p, the null, what did not happen, and the universal chart of intentions

A fourth problem with p-values as a measure of evidence is that they depend on unobserved data. This problem is rarely noted in the psychological literature, but is well known in the statistical literature (Berger & Berry, 1988; Wagenmakers, 2007). Because the p-value is defined in terms of the integral of an extreme region in the sampling distribution where the hypothesis is fixed and the data varies, the unavoidable consequence is that p-values are defined in terms of data that were not observed. For example, in Fig. 1, the p-value of 0.049 was obtained by looking, not only at the point where $z = 1.65$, but at the entire area below the curve beyond $z = 1.65$ as well. This region contains data that we could have observed, but did not observe, such as $z = 1.69, z = 2.2, z = 3.45$, and so on.

This property of p-values, that they go beyond the observed data, is virtually never justified nor discussed in introductory statistics and methodology books in psychology, but is simply treated as one of several steps in arriving at p-values (for a refreshing exception, see Dienes, 2008). But this property of p-values is devastating for interpreting p-values as measures of evidence, an interpretation which is common in introductory books and among researchers, although often mixed up with a Neyman–Pearsonian stance toward decision error control (Gigerenzer, 1993; Hubbard & Armstrong, 2006). If p-values depend on unobserved data, then taking p-values as a measure of evidence implies that the evidence obtained from an experiment depends on things that did not happen (cf. Kruschke, 2010). This is, for many, a counter-intuitive and ultimately undesirable property for any measure of evidence, and a property that violates the likelihood principle (Birnbaum, 1962) which states that all inferential information contained in a sample is provided by the likelihood function which does not incorporate unobserved data.

It is not in any way obvious why things that could have happened, but did not happen, should influence the evidence indicated by a statistic. No one has put it better than Jeffreys (1998): “What the use of P implies, therefore, is that a hypothesis that may be true may be rejected because it has not predicted observable results that have not occurred. This seems a remarkable procedure” (p. 385). The fact that p-values are defined in terms of unobserved data in a sampling distribution brings with it some peculiar consequences. Despite the objective aura surrounding p in many introductory books and in many results sections, p is ultimately subjective in a way that is completely unknowable (Dienes, 2008, in press; Royall, 1997) as illustrated by the following example.

It was actually Joe the punk rock research assistant who helped me conduct the punk rock memory test that reportedly generated a p-value of 0.049. I designed the study but Joe handled all the experimentation and data analysis. I remember the morning that Joe entered my office to report the results. I asked him what the results were and he said “It looks real interesting, we have a p-value of .049 indicating an effect in the predicted direction. Why, no more beer for me. No sir, at least not before any show. Or, not before the important shows. We have to brush up our act as punk rockers and nail the lyrics. By the way, I looked at the data after 20 punk rockers you know. We had a p-value of .20 at that point. Good thing we ran 50 punk rockers.” Somewhat perplexed I yell “What? You looked at the data after 20 punk rockers?! Houston, we have a problem. Our p-value may or may not be .049 anymore.” Joe looks at me with suspicion: “Hey! I know how to calculate a p-value. I’m not Einstein but just because I’m a punk rocker it doesn’t mean I screw up every time I get the chance. Do it yourself if you don’t trust me.”

Joe the punk rock research assistant is sincere and good with numbers, but what he fails to take into account is the connection between the sampling distribution and hypothetical actions. We need to ask ourselves, what would have happened under alternative scenarios when Joe peeked at the data after 20 punk rockers? What if the results had been significant then? Would we have stopped the experiment and be done or would we have continued toward the planned 50 anyhow? What would Joe say to me and would he be able to convince me in any direction? Would I be able to convince him? Answering these questions matters a great deal, because the p-value is defined via the sampling distribution over a range of hypothetical outcomes, which in turn is only defined given a particular sampling procedure. If we do not know how we repeatedly are to imagine sampling from a population, then we do not have a definite sampling distribution.

Note that Joe the punk rocker is only included in this story in order to make the point crystal clear, but the same problem arises with or without Joe peeking at the data. What if I conducted the entire experiment alone? What would I have done had the results not been significant after the planned 50 punk rockers? Would I have run additional punk rockers? Of course, I could say “no, I would have stopped”, but who really knows? The general problem of what anybody would have done had things been different is an ancient philosophical problem connected to the nature of free will, consciousness, agency, determinism, quantum wave
functions, and what not, and it is not at all clear what the answer should be.

The requirement to answer the question of what one would have done had things turned out differently in order to even generate a p-value is no trivial requirement and it is ultimately counter-intuitive. Why should things that did not happen matter? The dependence of p-values on unobserved data leads to a set of procedures that students and researchers often take for granted, such as stopping rules, corrections for multiple testing and post-hoc reasoning. While such procedures are well motivated within the realm of p-values it is a useful exercise to ask oneself whether such procedures should be part of a measure of evidence (cf. Cornfield, 1976). Do you think that what did not happen should influence the evidential value of your data? Do you think that whether you thought of an idea on Monday or Tuesday should influence the evidential value of your data? If the data remain the same, but the mental state of a researcher in a Swedish university changes slightly, does the evidence indicated by the data suddenly change? Ultimately, p-values are inherently subjective because they depend on your answering what you would have done under alternative scenarios. Not just what you think you would have done, but what you actually would have done (Royall, 1997).

Consider an additional example (adapted from Royall, 1997) that does not concern whether and when we would have stopped collecting data, but simply differential access to irrelevant information. That is, one can think of situations where two researchers have different access to information concerning data that were not observed. Such situations may generate different p-values for the two researchers (or the two situations), despite the fact that the difference in information access is evidentially irrelevant (that is, irrelevant for the strength of evidence from obtained data).

Joe the punk rock research assistant and I often flip a coin in order to decide who will go out and pick up lunch. If we flip heads then Joe runs out to get lunch, if we flip tails then I go. Lately, Joe thinks that the coin has been working against him a little bit too often and in a burst of rage he accuses me of using a biased coin. Joe suspects that the probability of heads using our coin is not 0.5, but somewhere above 0.5. We decide to flip the coin 50 times and then we calculate a p-value assuming that the probability of heads is 0.5.

In the interest of illustrating some problems with p-values for Joe I decide to set up the situation so that Joe flips the coin and records the outcome. After tossing the coin 50 times Joe knows the number of times the coin landed heads, but I instruct him not to report that number to me. Instead, he only tells me whether the number of heads was 30 or not. This way, Joe and I effectively record different random variables. For Joe, the outcome is a number between 0 and 50, where the probability of a particular outcome is given by the binomial distribution assuming a specific probability of the coin to land heads. For me, the outcome is either 30 or not-30, where the probability of 30 is given by the binomial distribution assuming a specific probability of the coin to land heads. The probability of the outcome not-30 for a specific probability of the coin to land heads is 1 minus the probability of the outcome 30 assuming a specific probability of the coin to land heads.

Joe flips the coin 50 times and the outcome is 30 heads. Joe calculates his p-value as the probability of 30 or more heads assuming the coin has a 0.5 probability of landing heads on each flip, which gives $p = 0.10$ one-tailed (a two-tailed test would give $p = 0.20$). For me, there are no more extreme outcomes than 30, because I only know whether the outcome is 30 or not-30. My p-value is simply the probability of exactly 30 heads assuming the coin has a 0.5 probability, which gives $p = 0.04$. In effect, Joe and I would disagree somewhat on what the evidence from our study against a fair coin actually is, because we have two different p-values.

Joe objects, “Well, no wonder, we have access to different information, but I have access to more information so I suppose we should go with my p-value of 0.10”. It is true that Joe has potential access to more information, but the problem with p-values in this situation is not resolved simply by deciding to go with Joe’s p-value. Had the outcome been not-30, then Joe would have been able to evaluate the data in much more detail than I. In the long run, one would like to be in Joe’s shoes (having access to all exact potential outcomes) rather than mine when studying the behavior of coins. However, in this particular study, I did not observe not-30 and Joe did not observe a specific number contained in the set not-30, we both observed exactly 30 heads. We both have access to the probability of the data that we actually observed (30 heads) for a variety of probabilities of the coin landing heads (e.g., the probability of 0.5). The conditional probability p (exactly 30 heads given 0.5 probability of landing heads on each flip), is the same for both me and Joe and we both have access to the exact outcome (30 heads) of the study. If you think that only the data you actually observed matter for the strength of evidence in a study, then p-values are not valid as measures of evidence.

The point is not to decide which p-value (0.04 or 0.10) is correct. In one sense both are correct, because Joe and I observe different random variables. In another sense, neither is correct, because neither of them represent the statistical evidence correctly. The point is that a valid measure of statistical evidence should (at least) indicate the same evidence for me and Joe in the given scenario, because Joe and I observe the same outcome and the conditional probability of that outcome given a hypothesis is the same for both of us. The strength of statistical evidence from a study should not depend on things that did not happen. If two researchers have differential access (for whatever bizarre reason) to information about outcomes that did not occur, then that should not affect a valid measure of statistical evidence from the observed results.

Can we avoid the above difficulties by sticking to the Neyman–Pearson framework? The answer is: to some extent, but not completely, and maybe not in a way that will satisfy what most researchers want. The good news is that the Neyman–Pearson framework is much more coherent than the Fisherian. The bad news is that the former does not provide researchers with what they often want: a measure of evidence. In addition, some of the counter-intuitive consequences of p-values remain in the Neyman–Pearson framework.

p AND DECISION ERROR CONTROL

Jerzy Neyman and Egon Pearson did not follow Ronald Fisher in considering p-values as measures of evidence against a hypothe-
sis. Instead, the Neyman-Pearson framework is all about controlling decision error rates. Neyman and Pearson (1933) express the underlying motive succinctly: “We are inclined to think that as far as a particular hypothesis is concerned, no test based upon the theory of probability can by itself provide any valuable evidence of the truth or falsehood of that hypothesis. But we may look at the purpose of tests from another view-point. Without hoping to know whether each separate hypothesis is true or false, we may search for rules to govern our behaviour with regard to them, in following which we insure that, in the long run of experience, we shall not be too often wrong” (pp. 290–291, italics added).

Briefly, in the Neyman–Pearson framework a single hypothesis (such as the null) is not enough, but an alternative hypothesis is required. Depending on the outcome of our particular test statistic we reject one of the two hypotheses. We know that, in doing so, we will be wrong to some extent in the long run. The probability of rejecting the null when it is true (Type I error) is \(\alpha \) and is fixed by specifying a critical region of the sampling distribution. If \(p < \alpha \) then the null is rejected. The probability of rejecting the alternative hypothesis when it is true (Type II error) is \(\beta \) and is a function of \(\alpha, N \) (sample size), whether the test is one-tailed or two-tailed, and effect size. Statistical power is defined as \(1 - \beta \) and gives the probability of accepting the alternative if it is true. Note that each of the two hypotheses either is true or not. The probabilities apply to the long-term relative frequency of our decisions (reject or accept) given certain sampling assumptions, a specified test statistic, whether a given hypothesis is true or not, and specific decision rules. Also note that \(\alpha, \) not \(p, \) indicates Type I error rate. In the Neyman–Pearson framework \(\alpha, \) the probability of Type I errors, is a fixed property of the test procedure and \(p \) is a random variable whose exact value is irrelevant. All we need to know about \(p \) is whether \(p < \alpha. \)

The four problematic points concerning \(p \) used as a measure of evidence discussed previously were (1) \(p \) cannot indicate evidence for the null, (2) \(p \) does not respect the relativity of the concept of evidence, (3) \(p \) confuses strength of evidence with the probability of obtaining evidence, and (4) \(p \) depends on unobserved data (see Table 1). If the Fisherian interpretation cannot handle these problems, perhaps the Neyman–Pearson interpretation can?

The Neyman–Pearson framework directly dodges the first three problems because in that framework there is simply no use of \(p \) as evidence at all. What the Neyman–Pearson framework does is to specify a set of decisions and a set of decision rules. Depending on the outcome a decision is taken and long-term conditional error rates are under control. The Neyman–Pearson framework does not involve the objective of providing measures of evidence, so the first three problems listed above can hardly be considered problems for that framework, if the framework is judged by its own standards. Avoiding the problems while retaining \(p \) may seem virtuous, but it requires detaching and trading in the concept of evidence from \(p. \) For instance, if \(\alpha = 0.05 \) then \(p = 0.00001 \) is not more evidence against the null than \(p = 0.049, \) or even \(p = 0.99, \) because neither of them indicate evidence. Informally and intuitively, one may still be stuck with the thought that “surely my data that gave \(p = 0.00001 \) indicates more evidence against the null than \(p = 0.99 \) for equal sample sizes?” Well, true, but it is not of much more help than simply looking at a graph and \(p \) alone is not enough to settle the score. In the Neyman–Pearson framework \(p \) does not indicate evidence, but one may be tempted by a compelling bending of the mind back into the Fisherian interpretation (it really is difficult to withstand those gravitational forces). In that case, however, one is back on square one, once again facing the problems outlined previously (e.g., that \(p \) is independent from any alternative hypothesis). One could investigate how \(p \) fares against more consistent measures of evidence and use \(p \) on that basis. This has been done (e.g., Berger & Sellke, 1987; Wagenmakers, 2007) and the answer is that \(p \) often overstates the evidence against the null. Quite regardless of being biased, if \(p \) does not embody the philosophical and statistical principles of the concept of evidence, then why not stick to those measures that do embody consistent principles of evidence, such as likelihood ratios (Glover & Dixon, 2004), given that evidence is the wanted property? Neither Fisher \(p \) usage nor Neyman–Pearson \(p \) usage provides such a property in a sensible way. Within the Neyman–Pearson framework error rates may (ideally) be consistently controlled, which is a wonderful thing if that is the wanted property. It comes at the price of evidence and Neyman and Pearson (1933) were of course well aware of this. By design (or by the Neyman–Pearson lemma), the Neyman–Pearson procedure may very well indicate that a hypothesis should be rejected even though the evidence does not speak against it (Royall, 1997).

What about the fourth problem concerning the dependence of \(p \) on unobserved data? This problem remains in the Neyman–Pearson framework, but the severity of the problem is a function of philosophical outlook. When a measure of evidence is on the line it is difficult to avoid the sting from the fact that what did not happen and unknowable intentions affects the evidence provided by a set of data. For many, the sting may very well appear equally daunting in the Neyman–Pearson context of pure action aimed to control decision error rates, but the problem is, in my opinion, less severe in the Neyman–Pearson context.

Someone might critically ask “but why should unobserved data affect the accept/reject verdict that my data affords?” It is somewhat misleading to suggest that your data “affords” a conclusion in the Neyman–Pearson context. The decision you make, the verdict given, the sentence assigned is a function of the region in which the data land, but to say that your data “affords” a conclusion invites the interpretation that one rejects a hypothesis because the data speak against it. This is not the motive underlying the Neyman–Pearson approach. The objective is to as consistently as possible control decision error rates in the long run and, obviously, if we are to control this in the long run, we have to know what we are supposed to imagine that we do in the long run, which may involve a variety of alternative outcome scenarios. In this context, it is for example natural that two experiments differing only in their sampling plan and leading to the same data result in different \(p \)-values (or adjusted alpha levels). Unobserved data have a natural role to play here, but the most crucial insight that sometimes is forgotten is that in the context of Neyman–Pearson and decision error control, statistical evidence is not a central part of the inferential process.

The general problem of not being able to ultimately know what one would have done had things turned out differently remains in the Neyman–Pearson approach to some extent. But, this is precisely why the Neyman–Pearson approach is surrounded by strict decision and sampling rules that cannot be tampered with. Fisher
objected to such rules, which he found inappropriate for science and considered on a par with Russian collectively organized 5-year plans (Fisher, 1955). What Fisher did not appreciate is exactly what makes the Neyman–Pearson approach as consistent as possible (although one can of course question whether the approach itself is what scientists want or need), because strict rules that can in principle be automated constrain potential effects of subjective researchers’ inferential and interpretational whims. For example, close to all psychologists have probably encountered the term “marginally significant”, denoting a p-value between 0.05 and 0.10. Often such results are taken to mean “not quite there, but almost, and that counts for something and grants some support against the null”. This leans toward the (problematic) Fisherian interpretation, but often this is mixed up with the Neyman–Pearson approach, because decision error control is also often assumed to be on the table. If the latter approach is taken, then there is no such thing as marginally significant in the traditional sense. In the end, though, even the Neyman–Pearson approach is subjective in the sense that it inherently incorporates statistics that depend on what did not happen.

A classic recommendation in the methodological and statistical literature within psychology is that researchers consider replication, effect size and confidence intervals, rather than simply rely on p (Cohen, 1994). This is in the general spirit of recommending that one take a variety of indices and strategies into account when evaluating research. However, it is important to be clear about the benefits and limits of what each piece of information can be expected to provide. For current purposes, it is of main interest to evaluate how these complementary strategies relate to the concept of evidence, a concept for which p is unable to serve coherently.

Replication, effect size, and confidence intervals

Replication is an ambiguous term, but even when specified further (e.g., an effect size > 0 in the predicted direction) it is clear that replication does not easily translate into an obvious evidence metric. Successful replications just result in more data and the question becomes “how do we evaluate data in terms of evidence?” The concept of replication has little to offer in this regard, except from the elusively obvious notion that “the more replicable the better”, but better for what? The fact that a phenomenon is incredibly replicable has, per se, no direct impact on evidence. To rely on replication is simply to, explicitly or implicitly, be faced with the question of how to evaluate the data that come out of those replications.

Effect size is also insufficient as an index of evidence. In many circumstances effect size will be related to the strength of evidence, but ultimately it depends on the questions asked. For example, suppose statistical hypothesis 1 (H_1) represents a specific small difference between an experimental and a control group, H_2 represents a specific medium difference, and H_3 represents a specific huge difference. The results show a small difference and the data would seem to provide more evidence for H_2 over H_3 than for H_1 over H_2, because the results diverge more from H_3 in relation to H_1 than from H_2 in relation to H_1. This is not captured by the effect size, which stays the same regardless of the hypotheses considered. Effect size is just a descriptive tool and a property of the data, independent of the hypotheses considered. Furthermore, the strength of evidence from obtained data can clearly differ between experiments when the effect size is constant. Suppose two experiments concerning a mean difference generate the exact same data and effect size, but they differ in sample size. In one experiment the sample size is very small, while in the other the sample size is very large. We are interested in the strength of evidence against the null relative to the obtained mean. Surely, the evidence against the null relative to the obtained mean is stronger in the case where the sample size is larger. The point may be perceived as trivial, but it clearly shows that effect size does not serve the purpose of quantifying strength of evidence per se.

Turning to confidence intervals, an $x\%$ confidence interval means that when using a specified sampling procedure the true value of an estimated parameter will fall within the boundaries of the resulting intervals $x\%$ of the time. It does not mean that the true value will fall within this particular one interval $x\%$ of the time and it does not mean that one can be $x\%$ certain that the true value is within any particular interval. As can be seen from the definition of confidence intervals, they are intimately related to the logic of the Neyman–Pearson framework. Within that framework they provide an index of precision and sensitivity in terms of sampling and long-term objective probability. That is, it is the procedure (e.g., rejecting the null or generating an interval) that has a long-term conditional error probability (of, e.g., rejecting the null given that it is true or generating an interval that does not contain the true population parameter value). Translating that into an index of evidence for or against a particular hypothesis given only particular obtained results is neither obvious nor feasible. Confidence intervals simply do not speak directly to the question of what these and only these data imply for any hypothesis, because confidence intervals depend on considering a whole class of (imagined or real) replications. Just as p-values depend on subjective intentions and unobserved data, so do confidence intervals (Kruschke, 2010). Rather than focusing on a single null, a confidence interval focuses on a range of hypothetical nulls and indicates which ones can be rejected, given a particular long-term alpha level. The sampling distribution associated with each of the nulls involves unobserved data and is as sensitive to intentions as any single p-value. If, say, sampling intentions change, so does the resulting confidence interval. In effect, even though confidence intervals certainly convey more information than a single p-value, the criticism directed against evidential p-values (Table 1) applies to confidence intervals as well.

Replication, effect size, and confidence intervals can surely constitute useful tools in the course of scientific investigation (Thompson, 2006). The claim here is simply that they do not constitute straightforward candidates to take on the role of evidence indices, except in the general and informal sense in which, for example, a successful replication may be said to constitute additional evidence for a hypothesis. However, in such statements, the evaluation of evidence is presupposed and implicitly buried within the statement itself. A replication is only evidence for a hypothesis if the original data were evidence for the same hypothesis, and the question is “in what sense were they evidence and how can we quantify that in a valid way?”

The efforts of trying to squeeze the concept of evidence into the Neyman–Pearson framework are both futile and surprising.
because (1) the framework was not built to handle it and (2) there are alternative frameworks that are able to handle the concept of evidence in a straightforward and consistent way and that respect our basic intuitions concerning the concept of evidence. The following section discusses the most direct way of representing the strength of statistical evidence, namely the likelihood ratio.

THE LIKELIHOOD RATIO

Likelihood was an important concept for both Fisher and Neyman–Pearson, but for neither of their legacies did likelihood assume the leading role designed to directly embody the concept of evidence. For Fisher, mainly the p-value emerged as a measure of evidence, while Neyman–Pearson avoided the entire issue of evidence.

A p-value denotes the probability of these or more extreme unobserved data under a fixed hypothesis. In contrast, the likelihood of a hypothesis (for continuous data) denotes the probability density (multiplied by any arbitrary constant) of exactly these observed data under the hypothesis. A likelihood function is obtained by calculating the likelihood over a range of specific hypotheses, where the different hypotheses specify different values of a parameter. The likelihood ratio requires two specific hypotheses (H_1 and H_2) and is given by the likelihood of H_1 divided by the likelihood of H_2 (Dienes, 2008; Edwards, 1972; Glover & Dixon, 2004; Royall, 1997). The likelihood ratio forms a relative measure of statistical evidence: the more likely the data are under H_1 compared to H_2, the more the data are evidence for H_1 over H_2. The data are evidence for one hypothesis over another if the former more strongly predicts the data relative to the latter.

The likelihood ratio does not in itself say what one should do or how one should act in light of the data. Such considerations depend on factors outside the data space (e.g., cost, risk aversion, prior commitment). Instead, with respect to the observed data and two hypotheses, the likelihood ratio forms a measure of statistical evidence that is free from the problems with p-values as measures of evidence. The likelihood ratio can indicate support for the null hypothesis, it is conditioned on two hypotheses and forms a relative concept, it does not confuse the strength of evidence with the probability of obtaining evidence, and it does not depend on unobserved data. In sum, likelihood ratios avoid the problems with evidential p-values and provide researchers with a direct and intuitive concept of statistical evidence.

Royall (1997) gives a clear general overview of likelihood ratios and on how to eliminate nuisance parameters (parameters not of immediate interest, such as the variance of a distribution when the mean is of interest). Dienes (2008) provides an introduction to various schools of statistical inference, the likelihood being one of them, along with examples and computational tools. Glover and Dixon (2004) provide an approach to calculate likelihood ratios from SPSS output along with possible ways of correcting for the complexity of hypotheses. Blume (2002) provides a likelihood tutorial with, among other things, examples and discussion of nuisance parameters. Royall (2000) discusses the probability of observing misleading evidence when using likelihood ratios.

Likelihood ratios have not yet received the detailed computational and implementational treatment in psychology that they deserve. Every textbook of statistical inference aimed at psychologists dives into p-values and (often incorrectly) explains their basis, but very few books include likelihood ratios. There is a cure for the commandment “Hail the impossible” and that cure is simply to find alternative candidates to embody the concept of evidence. The likelihood ratio is one such candidate. Given that one is interested in the evidence for a hypothesis over another in light of the data, p-values are much less than ideal.

Example: Punk rock revisited

What is the evidence conveyed by the data with respect to the null hypothesis H_0 ($\mu = 0.00$) in the punk rock memory study? This question is generically meaningless unless we specify an alternative hypothesis H_1. Suppose that we consider a mean score of 3.00 among the beer-deprived punk rockers as the alternative H_1, corresponding to a medium effect size ($d = (3.00 - 0.00)/6.00 = 0.50$). If we treat this alternative hypothesis as a relevant comparison against the null, what do the data say about the null ($\mu = 0.00$) and the alternative ($\mu = 3.00$)? Recall that according to the significance testing procedure we have evidence against the null (Fisher, $p = 0.049$) or should reject the null (Neyman–Pearson, $p < 0.05$).

Assuming a normal population and a known population standard deviation of 6.00, the likelihood ratio comparing H_0 and H_1 is given by the probability of the observed data ($M = 1.40$ of our 50 scores) under H_0 divided by the probability of the observed data under H_1. Consulting the relevant normal sampling distributions under H_0 and H_1 respectively, we find that the probability (density) of the observed data is about 0.12 under H_0 and about 0.08 under H_1.

The likelihood ratio given by $p(\text{observed data}|H_0)/p(\text{observed data}|H_1)$ indicates support for H_0 over H_1 if larger than 1, and evidence for H_1 over H_0 if smaller than 1. Ratios larger than 8 (or smaller than 1/8) indicate “pretty strong evidence” (Royall, 1997). Our likelihood ratio is 0.12/0.08 = 1.50, indicating very weak evidence for the null over the alternative hypothesis.

Figure 2 shows the entire likelihood function for the punk rock memory data. The likelihood ratio for any two hypotheses (population means) is obtained by the ratio of the curve heights of the population means being compared. The observed mean is the maximum likelihood estimate of the population mean, that is, the most likely estimate of the population mean given the data. The horizontal line in Fig. 2 shows the 1/8 likelihood interval: the range of alternative population means which are at most 8 times less likely than the maximum likelihood estimate. Population means outside the 1/8 likelihood interval are at least 8 times less likely than the maximum likelihood estimate.

The strength of evidence against or for the null depends on the alternative hypothesis, just as it should be. Evidence is relative and it may or may not be informative to know that the punk rock data are (weak) evidence for the null over a specific alternative. Figure 3 gives a more complete picture by depicting the likelihood ratio of the null against various alternatives. Here, the likelihood ratios are transformed by the natural logarithm, resulting in an additive scale. Negative ratios indicate evidence for the alternative over the null, while positive ratios indicate evidence for the null over the alternative, and 0 indicates no evidence either.

© 2010 The Author.
The hypothesis is not true? What if a paper contains two experi-
...
Objections against likelihood

(1) "With likelihood ratios one will almost always find evidence against the null." The reasoning behind this objection is that in most cases the likelihood of some specific hypothesis other than the null will be higher than the likelihood of the null. For example, for our punk rock study, an observed mean $M = 0.00$ is the only observed mean that will generate a higher likelihood for the null than for any other specific hypothesis. All other observed means will enable at least some likelihood ratio that constitutes evidence (regardless of how weak) for at least some alternative hypothesis over the null.

Objection 1 above is a misleading objection. The objective of likelihood ratios is to quantify statistical evidence, so that given a probability model and observed data they quantify the relative likelihood of one hypothesis in relation to another. This is a measure of the strength of evidence. This question should not be confused with the probability of observing misleading evidence (Blume, 2002; Royall, 2000). The probability of observing misleading evidence is relevant before conducting an experiment. Once the experiment is conducted that probability becomes immaterial and has nothing to do with the strength of observed evidence. Once the data are in, the evidence is either misleading or not, and there is no way to know which is the case. The probability of observing misleading evidence can be calculated and should be calculated before an experiment is conducted, in order to minimize the risk of observing it.

Even though it is often possible to find evidence against the null, it is certainly not the case that one is likely to find strong misleading evidence against the null. The universal bound $1/k$ provides a maximum boundary for the probability of observing misleading evidence, where k is the likelihood ratio for any two specific hypotheses (Royall, 2000). In practice, the probability is often considerably smaller. Misleading evidence for H_1 in this context means observing a likelihood ratio k favoring H_1 when H_2 is true. Furthermore, the more data you collect (regardless of your sampling plan), the less likely you are to observe misleading evidence. Contrast this with p-values that are guaranteed to be smaller than 0.05 if you just keep collecting data and stop when it suits you. With likelihood ratios, you are generally unlikely to observe strong misleading evidence for a hypothesis over the null even if you set out to selectively find it (Royall, 2000). Likelihood ratios encourage researchers to collect more data, while p-values punish researchers for collecting data (unless it was part of the subjective sampling plan). Using likelihood, the more data you collect the more likely it is that the true hypothesis is the one receiving the greatest likelihood. What more could you ask for?

(2) "Likelihood ratios may encourage researchers to accept or believe strongly in a hypothesis that was implausible to begin with." This objection is also misleading. The reasoning behind the objection is that an experiment may generate evidence for an implausible alternative hypothesis (e.g., a particular parameter value indicating some degree of extrasensory perception) relative to a null (e.g., no extrasensory perception). Because likelihood ratios do not require specifying the implausible alternative hypothesis (or any hypothesis) beforehand and because they do not take prior beliefs into account, one may end up rejecting the null or nothing has changed really. Supposedly, we are licensed to think "the results constitute evidence that..." or "we found evidence for an effect of...:" Yet, what is often missing is a proper measure of the strength of that evidence in statistical terms (although the p-value is often given that role). Likelihood ratios provide such a measure. Before concluding this article, I consider some common objections against likelihood ratios and argue that the objections are all misleading.
believing strongly in the alternative on the basis of a likelihood ratio that indicates evidence for the alternative relative to the null.

The objection is misleading because it presupposes that a measure of statistical evidence (the likelihood ratio) taken by itself should tell you what to do and what to believe. This is not the case. There may very well be factors (such as prior belief or cost) that result in rejecting a hypothesis that is supported by the data relative to another hypothesis or believing in a hypothesis that is less supported by the data relative to another hypothesis. In fact, the Neyman–Pearson lemma implies that the former situation may very well happen and Bayes’ theorem implies that the latter situation may very well happen. There is no contradiction here because what the data say in terms of evidence for or against a hypothesis relative to another is a different issue than decision making or specifying what to believe.

(3) “Likelihood ratios require that researchers specify specific relevant hypotheses, such as \(\mu = 1.45 \), but researchers are often unable to specify such hypotheses. Significance testing and Bayes factors can deal with statistical evidence concerning composite hypotheses, such as \(\mu \neq 0 \), while likelihood ratios cannot”. As with the other objections, this one is misleading as well, although it does point to important general constraints concerning the basis for any measure of statistical evidence. The interpretation of likelihood ratios is guided by the Law of Likelihood which says that the magnitude of the likelihood ratio represents the strength of evidence for any two specific hypotheses under a probability model and observed data (Hacking, 1965; Royall, 1997). Composite hypotheses, such as \(\mu \neq 0 \), do not have a likelihood so the Law of Likelihood does not say how to represent relative evidence for or against a composite hypothesis (Royall, 1997). One could use some specific rule that designates how to summarize the evidence over a composite space, such as considering the simple hypothesis in the composite space with the highest likelihood (Zhang, 2009), considering the interval of the lower and upper likelihood in the composite space (He, Huang & Liang, 2007), or by using model selection tools that penalize composite models for over-fitting in order to enhance predictive accuracy (Glover & Dixon, 2004). However, there is no clear-cut objective evidential basis for choosing any of these particular rules and the resulting evidence will depend on the rule chosen.

Bayes factors constitute the Bayesian version of likelihood ratios and can deal with composite hypotheses (see Dienes, 2008, for an introduction), but they do so by (1) incorporating prior probabilities for a hypothesis (and thus do not depend solely on the data) and (2) by changing the problem from evidence for or against a composite hypothesis to average weighted evidence for or against a range of specific hypotheses. As emphasized by Royall (2000) it is not the case that Bayes factors achieve representing relative evidence for or against a composite hypothesis where likelihood ratios cannot achieve this. Instead, Bayes factors represent a particular way of using information that goes beyond the obtained data in order to make the Law of Likelihood apply.

Significance testing and \(p \)-values are often construed as dealing with composite hypotheses, but the problem is that \(p \)-values are not valid measures of statistical evidence generally. Thus, before claiming any composite-related advantage of \(p \)-values, one has to face the problem that this composite-related advantage is not one that coincides with criteria for constituting a measure of statistical evidence, as exemplified by the problems with \(p \)-values discussed in this article.

As emphasized by Blume (2002), dealing with simple pair-wise hypotheses is common in statistics and the likelihood function is often enough to summarize the statistical evidence at hand. Other solutions may be required in situations that definitely demand going into a composite space in the interest of statistical evidence, but before doing so researchers may want to (1) recognize the possibly arbitrary nature of selecting any particular rule to summarize the evidence across a composite space and (2) definitely decide that simply representing the evidence in the form of a likelihood function or a set of relevant likelihood ratios is not informative enough. Using Blume’s (2002) example from a different domain, a power curve is usually not reduced over a composite space. Rather, the entire power curve depicts the relevant information concerning statistical power across a range of specific alternative hypotheses, with no need of further reduction and nobody seems troubled by this lack of a composite summarization. Likewise, likelihood functions represent the statistical evidence across a range of specific hypotheses.

Note that researchers are not required to specify specific hypotheses beforehand in order to use likelihood ratios. The likelihood function depicts everything you need to know about the data with regard to their status in terms of relative evidence, regardless of when you decided to consider a specific hypothesis. However, in order to calculate the probability of misleading (or of weak) evidence, you have to consider at least two specific hypotheses (just as you have to consider two specific hypotheses when calculating the frequentist corresponding Neyman–Pearson notion of power).

Psychological theories are often not constrained to the extent that specific hypotheses can be generated from a theory. Rather, psychological theories usually lead to composite statistical hypotheses (e.g., “there is an effect”). In effect, one may get the impression that statistical evidence cannot be quantified in terms of likelihood ratios in psychology. However, the data will speak for or against a specific hypothesis relative to another one in terms of statistical evidence, regardless of whether the researcher was able to generate only those specific hypotheses from a theory. The likelihood function depicts all of the information in a single blow and will provide the relevant statistical evidence of data regardless of whether a particular researcher is interested in it or not. This is useful for science because it represents the entire statistical evidence, given only a probability model and data, in a way that is consistent with the Law of Likelihood. It is then up to the researcher to extract some further summary that is deemed meaningful in light of the specific research question and the domain of inquiry. For example, as shown in Figs. 3 and 5, one can consider the evidence against the null for a set of alternative hypotheses that are considered central. If a researcher cannot decide upon a relevant single likelihood ratio that seems particularly important in the current context, then that is all fine and probably quite common. Nothing stops the researcher from reporting many likelihood ratios or likelihood intervals (and all of them are indirectly included in the likelihood function). That is, likelihood functions, likelihood ratios, and the Law of Likelihood form the basis for statistical evidence. From there it is up to the researcher to provide an enlightening and relevant discussion in light of what he or she
is interested in and finds pertinent with respect to a more general theory.

CONCLUSIONS

Many of the traditional objections against significance testing and p-values (e.g. 0.05 is an arbitrary convention) miss the target, because they do not go to the core of the problem. The core of the problem is this: p-values are unsuited as measures of statistical evidence, as illustrated by the problems discussed in this paper (Table 1) and using p-values as a tool for long-term decision error control, while feasible in theory, may not be what psychological researchers typically want.

What use is there for p-values for any given researcher who wants to communicate the evidence of observed data for or against a hypothesis relative to another hypothesis? The proper answer might be: none, because there are better alternatives. Incorporating effect size, confidence intervals, and a million replications does little to offer, not only a useful, but a precise and coherent measure of effect size, confidence intervals, and a million replications does little to offer, not only a useful, but a precise and coherent measure of statistical evidence. In contrast, likelihood ratios can serve the purpose of quantifying statistical evidence. If the question of assigning belief to a hypothesis is on the table (and not just the evidence given by data), the entire Bayesian route is available (Dienes, in press; Kruschke, 2010; Rouder et al., 2009; Wagenmakers, 2007).

NOTES

1For an alternative, arguably more intuitive, but not unproblematic, interpretation of significance testing in terms of generating samples from a process with certain propensities rather than sampling from and generalizing to a population of individuals, see Frick (1998).

2Different psychologists have different perspectives on “marginal significance”. For example, an email listerv discussion for social and personality psychologists in 2004 sparked a controversy concerning the appropriateness of the term “marginal significance”, with responses in the hundreds to the question of whether marginal significance exists. The question that sparked the controversy and some of the responses can be found at http://www.mail-archive.com/tips@acsun.frostburg.edu/msg11881.html

3The probability density (and likelihood) here is

\[
\frac{1}{\sigma_n \sqrt{2\pi}} e^{-\left(x - \mu^2\right)/\left(2\sigma_n^2\right)},
\]

where the sample mean is \(x = 1.4\), the standard error of the mean is \(\sigma_n = 0.85\), and the population mean \(\mu\) varies as given by the hypothesis.

4The profile likelihood here is given by

\[
\frac{1}{n - 1} \left[1 + \left(\frac{\hat{t}}{n - 1}\right)^2\right],
\]

where \(t = (x - \mu)/SE\), the sample mean is \(x = 1.4\), the estimated standard error of the mean is \(SE = 0.85\), and the population mean \(\mu\) varies as given by the hypothesis. Royall (1997, pp. 133–134) recommends changing the exponent to \(n - 1\) instead of \(n\) in order to minimize the probability of observing misleading evidence (cf. Blume, 2002).

REFERENCES

© 2010 The Author.

Received 24 March 2010, accepted 1 August 2010