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1986). In other areas there has been some convergence between different
schools. For instance, Bayesians were for a long time opposed to experi-
mental randomization, but now recognize the importance of paying
attention to the procedures by which observations are collected (Rubin,
1978, Swijtink, 1982). Similarly, statisticians within the Neyman-Pearson
school have recognized the importance of conditional inference
(Lehmann, 1986, chapter 10).
~ There is a remarkable line of cleavage between the fields of appli-
cations conquered by the various schools. Methods and concepts of the
two “frequency” schools, Fisher and Neyman-Pearson, have penetrated
the experimental sciences, whereas Bayesians, usually designated the
“subjective” school, have not. But Bayesians have made inroads in
economics and have recovered traditional cighteenth-century appli-
cations of probability such as legal judgment and human rationality. We
will discuss some of the recent applications of Bayes' theorem when we
turn to the experimental study of thinking in chapter 6 and to appli-
cations in everyday life in chapter 7. There we will see ‘that modern
Bayesians often have fewer reservations about the range of applicability of
Bayes' theorem than Bayes himself seems to have had.

In the following we will emphasize the conflicting views of the school
founded by R. A. Fisher and of the Neyman-Pearson school. We will
concentrate on the analysis of significance testing. Bayesian thinking will
be discussed only insofar as it is relevant to understanding the conflicting
viewpoints. These two are the dominant points of view, at least in the
sciences discussed in this book. The form of statistical inference used in
the social sciences mixes elements from these two views.

Sir Ronald A. Fisher

At Cambridge University, Fisher studied physics, mathematics, and biology.
With this background, he became a leader in the inference revolution and
one of the great geneticists of his time. He helped reconcile the
Mendelian and the biometric approaches to the study of evolution and
inheritance, not least because of his abilities as a statistician (see chapter
4). Eugenics was indeed Fisher's driving motivation, and he judged social
measures according to the effects they had on the biological inheritance
of man. As an undergraduate he explained the rise and fall of societies in
terms of the birth rate among those whose hereditary superiority enabled
them to accumulate wealth. Before he embarked on an academic career,
he tried subsistence farming, since farming was, in his view, a eugenic way
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approximation by sampling its reference set (Fisher, 1962). Bayes’
theorem can, according to Fisher, only be used in those cases where there
is a priors distributional information about the population being sampled,
that is, the cases where we know that the population from which the
observations are drawn has itself been drawn at random from a super-
population of known specification. These cases are obviously very un-
common. Fisher also held that Bayes' theorem cannot be consistently
applied to other cases. For where we are ignorant and have no a priori
distributional information, there will exist more than one Way to express
that ignorance probabilistically. To allow different researchers mutually
inconsistent prior probabilities to express the very same state of ignor-
ance, would lead to an unacceptable subjectivism, where strength of evi-
dence is just a matter of taste.
Fisher's research program in statistical inference should thus be
understood in the light of his highly nuanced objections to the use of
Bayes’ rule. The Bayesians, he thought, are wrong to assume that all
uncertainties can be expressed in terms of probabilities. There are, in fact,
different ways to represent uncertainty that are appropriate in different
situations. In comparative experiments, when one does not have a good
idea about what is going on, one can make a significance test. A signifi-
cance test is a weak argument and can only suggest that a hypothetical
model (the null hypothesis) is implausible in the light of the data, assum-
ing that the experiment was performed properly. A significance test does
nOt permit one to assign any specific degree of probability to the hy-
pothesis. When past experience and theoretical considerations make one
confident in accepting a “full parametric model,” Fisher proposed other
methods to calculate and represent uncertainty, such as a likelihood func-
tion of the parameters in the model given the data. Only in certain special
situations, where his so-called fiducial argument applies, the uncertainty
of hypotheses, Fisher believed, can be expressed in terms of probability.
It is especially here that many have questioned the consistency of Fisher's
adherence to frequentism, since it is not clear with respect to what refer-
ence class a particular hypothesis has a’ frequency of being correct.

We will deal here only with significance testing. This does not mean
that the other tools caused less controversy. For instance, Richard von
Mises, himself a major proponent of the frequentist point of view, agreed
with Fisher's analysis of a frequentist use of Bayes' theorem. But he
believed that the route taken by Bayes was the only Wway to express uncer-
tainty of hypotheses in the light of data. To draw meaningful conclusions
from a small number of observations without using Bayes’ theorem, as
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Bisher wanted, meant getting too much from nothing, and he proclaimed

in 1951 that "the heyday of small sample theory . . . is already past” (von
Mises, [1928] 1957, p. 159). Only large samples, he believed, could form
the basis of objective inference, since here the influence of prior probability
assumptions on the posterior distribution vanishes. He confessed not to
understand “the many beautiful words used by Fisher and his followers in
support of the likelihood theory” (von Mises, [1928)] 1957, p. 158). Jerzy
Neyman, still less cautiously, held: “the theory of fiducial inference is
simply non-existent in the same way as, for example, 2 theory of numbers
defined by mutually contradictory definitions” (Neyman, 1941, p. 149).
For the purposes of this exposition, the essential features of a test of
significance can be summarized as follows. In a test of significance, such as
the one given in section 3.2, one confronts a null hypothesis with obser-
vations to see whether the observations deviate enough from the hy-
pothesis that one can conclude the hypothesis is implausible. There are
thus three concepts here: the null hypothesis, an otdering of the possible
observations as to their deviation from the null hypothesis, and a measure
of how far a particular observation deviates from the null hypothesis. We
will take up these three concepts in that order.

(1) The null hypothesis must allow the specification of a unique distri-
bution function for the test statistic. For instance, in the agricultural ex-
ample of section 3.2, the null hypothesis stated that each member of a
pair was a random observation from the same population, in which the
characteristic observed (yield of grain in bushels) has a normal distri-
bution with unknown mean particular to the pair, and unknown variance
the same for all pairs. The differences z, are then random observations
from a normal distribution with mean zero and unknown variance. The #-
statistic will have a known distribution, independent of the unknown
variance. It has to be emphasized here that, although one speaks here of
“random observations from the same population," the population isnota
real one that could in principlc be samplcd rcpcatcdly. For instance, if we
were to repeat the experiment on the same field, using the same design, 2
lack of rain might lead to a quite unrelated body of data that could not be
considered as taken from the same population as the first body of data.
Fisher called the population hypothetical, both since it concerns the pos-

sibly hypothetical situation that the treatment is ineffective, and since it
refers to a hypothetical series of repetitions in which the same “‘causal
matrix” is operative. We will return to the importance of this point later.

(2) The ordering of the possible observations should reflect their rela-
tive degree of deviation from the null hypothesis. But the observations

Berger and Sellke, 1987).
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&hypothcsis is not equivalent to accepting the efficacy of the cause in ques-

tion. The latter cannot be established on the basis of one single experiment,
but requires obtaining more significant results when the experiment, Of
an improvement of it, is repeated at other laboratories or under other
conditions. Therefore, not only significant, but also non-significant
results should be published in order to let the literature correctly reflect
the frequency with which certain type of experiment has led to signifi-
cant results. Already in his book The Design of Experiments of 1935 he
wrote: "'no isolated experiment, however significant in itself, can suffice
for the experimental demonstration of any natural phenomenon. .. In
relation to the test of significance, we may say that a phenomenon is €x-
perimentally demonstrable when we know how to conduct an experiment
which will rarely fail to give us 2 statistically significant result” (Fisher,
1935, §7). In this passage, Fisher distinguished significance testing from the
demonstration of a natural phenomenon. Careless writing on Fisher's part,
combined with selective reading of his early writings has led to the identi-
fication of the two, and has encouraged the practice of demonstrating a
phenomenon on the basis of a single statistically significant result. As we
will show in section 3.5, this practice is part of what we will call the hybrid
theory of statistical inference that mixes elements of Fisherian significance
testing with ideas from the so-called Ncyman—Pearson—Wald school of
hypothesis testing.

Both in this and in his insistence that 2 null hypothesis can only be
shown implausible, and can never be shown plausible, Fisher's Design of
Experiments has the same message as another remarkable book published
in the very same year, 1935 Karl Popper's Logic of Scientific Discovery.
Popper gave the same characterization of the demonstration of a natural
phenomenon: “[T]he scientifically signiﬁcantpby;iml effect may be defined
as that which can be regulatly reproduced by anyone who carries out the
appropriate experiment in the way prescribed” (Popper, [1935] 1968, p.
45). And just as Fisher wrote: “Every experiment may be said to exist
only in order to give the facts a chance of disproving the null hypothesis”
(Fisher, 1935, p. 16), meaning that performing an experiment that cannot
possibly disprove the null hypothesis is futile, Popper used falsifiability as
a criterion of demarcation between science and non-science: it must be
possible for an empirical scientific system to be refuted by experience,”

for “theories are . . . never empirically verifiable” (Popper, [1935] 1968,
pp. 40-1). Indeed, just as Popper needed a notion of “degree of corrob-
oration” to express the degree to which unfalsified hypotheses had stood
up to tests and “provcd their mettle” (Poppet, [1935] 1968, pp- 40-1),
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& J. Neyman and Egon 8. Pearson
of Karl Pearson, and worked at his father’s

Galton Laboratory at University College, London. Father and son dis-
agreed actively, however, about some of the most fundamental issues in
statistics. In 1925, Jerzy Neyman, a young lecturer at the University of
Warsaw and at the Central College of Agriculture in the same city,
arrived at the Galton Laboratory in London. Over the next couple of
years, Neyman and Egon Pearson formed a pcrsonal and intellectual
friendship that led to a whole new school of inferential statistics. Both
agreed with Fisher's criticism of the use of Bayes' theorem. Both were
also dissatisfied with Karl Pearson’s work, in part because it sometimes
involved Bayesian assumptions, and in part because it seemed to them too
eclectic. They were impressed by Fisher's new ideas, especially by his theory
of estimation and his concept of a statistical model (Fisher, 1922b). But
especially Neyman, who had a continental European attitude towards
mathematical rigor (he used to say, "I am a student of Lebesque”), felt
chat Fisher lacked a unified point of view that was strictly deduced from
first principles. He and E. S. Pearson tried to provide this in what later
became known as the Neyman~Pearson theory of “statistical inference as

inductive behavior.”

Fisher never perceived the emerging Neyman-
recting and improving his own work on tests of significance. Right up to
his death in 1962 he rejected the key concepts of the Neyman-Pearson
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slight; he held that: “the terrible weakness of his mathematical and scien-
tific work flowed from his incapacity in self-criticism, and unwillingness
to admit the possibility that he had anything to learn from others, even in
biology, of which he knew very lictle” (Fisher, 1956, p. 3; sec also 4.4).
Neyman (1967) reported that he and E. S. Pearson tried to avoid getting
‘avolved in this feud, but they could not long stay above the fray, and
their debate with Fisher was marked throughout by a bitter personal
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tone.
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area i$ for the usual choices of alternative hypotheses, nothing more than
the projection of a rejection region on the real line, and can be justiﬁcFi
on the grounds of avoiding an error of the first kind. Furthermore, 1t
turns out that many Fisherian choices of a test statistic are equivalent to a
choice of an alternative hypothesis.

But let us now examine some of the major differences between Fisher's
significance test and the Neyman-Pearson theory of testing statistical
hypotheses using a typical application of the latter theory, quality control
in industrial manufacturing. Imagine a manufacturer who produces metal
plates that are used in medical instruments. It is important that the
diameter of these plates should not exceed an optimal value, say 8
millimeters, by too much, since this would cause unreliability in the medical
instruments. The manufacturer considers a certain diameter, say 10
millimeters, as definitely unacceptable. Every day she takes a random
sample of 7 plates from production in order to decide between the two
hypotheses that interest her, i.c., whether the diameter is 8 millimeters
(H,) or 10 millimeters (H,). From past experience she knows that the
random fluctuation of diameters is approximately normally distributed;
furthermore she knows the standard deviation of these fluctuations,
which is not dependent on the mean. This allows her to determine the
sampling distributions of a sample statistic, such as the mean diameter for
each of the two hypotheses. Based on this statistical model and the actual
mean found in the sample, the manufacturer wants to make one of two
decisions (with important practical consequences): cither to accept H,
and reject H, , i.e. to place the whole production lot on the market; or to
reject H, and accept H, , i.c. to stop the production and look for the cause
of the apparent malfunctioning.

Each of the two decisions involves a possible error, with very different
consequences. If she accepts H, while H, is true, this will cause
unnecessary delays in the production process. If she accepts H, althpugh
H, is true, the defective instruments may cause harm to some patients,
and the firm's reputation may suffer. Since the latter seems to her the
greater danger, she decides to make this the error of the first kind, and to
set its probability @ at 0.1%. An error of the first kind would thus be
made if she accepted that the production run was faultless (H,), when the
run was in fact flawed with the plates having a diameter of about 10
millimeters (H,). Now she has to choose a rejection region that mini-
mizes the error of the second kind, false alarms. Since by varying the sample
size, she has control over the error of the second kind, she decides to set
B at 10%, and makes the calculations of the required sample size that will
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give her a test of this size and power. The actual sample is taken after this
initial phase of combined personal judgment (about the validity of the
statistical model and about the respective costs of the possible errors) and
mathematical calculation. From here on, the procedure is quite mechani-
cal. If the sample falls into the rejection region, H, is rejected and the
whole production lot is placed on the market; otherwise H, is accepted
and the production is stopped.

As Neyman emphasized, to accept a hypothesis is not to regard it as
true, or to believe it. At most it means to act as if it were true. Because
the manufacturer has set B = 10%, for example, she must expect in one
out of ten days to produce a false alarm - to stop the production even
though it is satisfactory. She will not necessarily believe that H, is false,
but only proceed as if it were.

In this example, it makes sense to give a behavioral interpretation to
acceptance and rejection, and the relative severity of making the two
kinds of error can be evaluated in terms of costs, thus providing a basis for
choosing size and power. But these very features indicate that the
Neyman-Pearson theory may be less suitable for scientific inference. To
see this, we will return to the example of section 3.2. There we won-
dered, with the agricultural chemist Johnston, whether a certain pro-
posed fertilizer would be causally effective in increasing grain yield. Here
we take as one hypothesis, H, , the null hypothesis of the Fisherian treat-
ment. H, states that the treatment is ineffective, or, in statistical terms,
that the z’s are independent observations from a normal distribution
with mean p = 0. To give a Neyman-Pearson treatment of that example,
we need the explicit introduction of at least one other hypothesis. For
this we take the hypothesis that our treatment has an (average) positive
effect of 0.3 bushels of grain per treatment plot. Statistically the hypothesis
H, states that the zs are independent observations from a normal distri-
bution with positive mean p = 0.3. We want to act conservatively, and to
keep the probability of rejecting H, , when it is true, small. As o we take
0.05. Our task is now to define a rejection region R such that p(R; H,) =
a, with maximum power of all possible rejection regions of that size. That
is, p(R; H,) = 1—B should be made as large as possible. The fundamental
lemma of Neyman and Pearson implies that such an R exists in this simple
situation. Since we have nine independent observations, the rejection re-

gion is a region in a nine-dimensional space, which is hard to visualize.
However, in this situation, the z-statistic projects this space on the real
line in such a way that one-sided tail areas correspond to a Neyman-
Pearson most powerful rejection region. If we choose R to be the set of




102 The inference experts

i a
observations with a ¢-value larg'cr than 1.&:6, vs;]c v::‘icrh;}/cthis
reg@bn of approximately the figf'lt size. To calculate ﬁcs Eon-ccmml :
rejection region is complicated; it involves the ;o-cla e oot
v g Libelf H:fmsr:i; i?)?utl i);g'aift Cthc alternative is u
is that u = 0.21, the power of the test i .90;

l_—s. 0.33,uthc power bfcomcs about 0.99. If wejvant tlc: ogrtnfcosr;a:‘x;:rll;‘;(lx};
ot about L& Thate ol bt hanc of oo i et e il
: about 0.6. There would be ce that s
1t?\;ejcct the null hypothesis, if it is in fact false - thf;t 115, if ;Anlst ;Eoclitp 23-
We could alleviate this by increasing the nu‘mbcr o) p'otsh e e -
ment. Considerations of power are, thus, quite uscfgl m}t1 : © gFiSher’S
experiment, and in a sense they make .cxphalt dZJSi an Cox, 1995
approach is called the sensitivity of an experimenta g ,
n, 1977).
Colljlf)v;cvcr,)in a scientific applicacgiolr; we rariltyativ:;n; ftfh:f:rrgrsti;
- disj ion "p = 0 or p = 0.21,” and the interpr
f;?ugf:t andusecond kind loses its cogency v'vhcn. we cazr;tcnciooft}i;tc.
Although this is partly a consequence oihch;ri :Snclﬁlli:cw:; T e
example as a disjunction, it remains true e
wrong hypothesis, and thus need a way to measure iscos
::1: kt)l;fwcg;n cigatayfnd hypothesis. Sip;ilarly, it 1shn(ztgcolc?;tl;o:;ca cs}cllc;r:zlf;(;
context can provide the utility consi lerations tha 0 e e
he size and power of a test. In the mixed case of an applie ) St
:15 agriculturpc, the alternative may be dcﬁn.csl by a l-):;:ko-;f‘;: g)yoltr;lré
where the present costs of applying tbc femhzcr arkcl. j el LD
present market price of the increase in yield. .But Enl]s ; C‘chn o0 3¢ 100
helpful, since these are subject to sharp fluctuations. hu venin s sera
utilitarian science such as agronomy, we nccc'i .conclusclioESShels i
pendent of the present market prices of fertilizers an bx;i e b
There are three ways in which Ncymag and Pearson cl ev iy
made Fisher's theory of significance testing more comp ;tcuaws consie
tent. First is the introduction of a rival hypothesis, wh;]c aalfcady <
look at testing as a choice between hypotheses. It aSCdurc v Ay
accepted that one of the hypothc§cs must.be: true, a”p’;(})fs b fopos,
ditionally has been called “induction by chmmauon.1 1 i e oo
sible to talk about the power of a test, and'to cahazi atc:1 gt s
sample size for the desired power, wthc Fisher a oT gc Neyman.
talked about the sensitivity of an experimental dcsxglr:.f e niog 10
Pearson theory thus gives a2 more complete framework for p

experiment.

The inference experts 103

Second, the frequencies of the errors of the first and second kind are
calculated on the basis of repeated sampling of the distributions in the
original mathematical specification of the problem, and the probabilities
have therefore a direct frequency interpretation (although, perhaps, still
2 hypothetical one: the manufacturer will never commit an error of the
first kind if her production process always runs faultlessly). Recall Fisher’s
belief that, in scientific applications, the population of the appropriate
statistical model for the analysis of experimental data cannot jn any realistic
sense be sampled repeatedly, and has “no objective reality, being exclu-
sively the product of the statistician’s imagination.” Thetefore, after the
sample is in, certain features of the sample (ancillary statistics) may be
used to discern a subpopulation with respect to which the more relevant
probabilities can be calculated (i.e., a conditional analysis). This led Fisher
to say that “the infrequency with which in particular circumstances, deci-
sive evidence is obtained, should not be confused with the force, or

cogency, of such evidence” (Fisher, 1956, p. 92), a remark that Oskar
Kempthorne has called a frontal attack on the repeated sampling prin-
ciple (Kempthorne, 1976).

Third, in place of what Neyman and Pearson saw as Fisher’s quasi-
Bayesian view that the exact level of significance somehow measures the
discordancy of the data with the null hypothesis, their interpretation of
statistical inference was a purely behavioristic one that refrained from any
epistemic interpretation, The concepts of size and power apply to a test,
whereas Fisher's significance level js 2 Property of the sample. If “induc.
tive inference” is inferring an evidential relation between a sample and a
hypothesis that determines a certain mental attitude towards the hypoth-
esis, as Fisher wanted to have it, inductive inference, according to
Neyman, cannot exist and, therefore, science cannot depend on it. What
had been thought to be inductive reasoning or inference, Neyman
argued, is really better called snductive behavior. To accept or reject a hy-
pothesis is “an act of will or 2 decision to take a particular action, perhaps
t0 assume a particular attitude towards the various sets of hypotheses”
(Neyman, 1957). Whether one calls this inference or behavior may be a
matter of taste. Indeed, if inference is the assertion of sentences on the
basis of assumptions, the Neyman-Pearson theory may well be looked at

as a theory of inference (Hacking, 1980). Valid deductive inference is

8uarantee that much. But the Neyman-Pearson theory can promise high
frequency of getting it right. Suppose the decision one makes is to assert
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ever, argued that there was no difference in fields of application, because
they had simply made Fisher’s theory more consistent. For instance, in a
paper presented to a conference on the question “For what use are tests
of hypotheses and tests of significance?” Neyman wrote: “The title of the
present session involves an element that appears mysterious to me. This
element is the apparent distinction between tests of statistical hypotheses,
on the one hand, and tests of significance, on the other. If this is not a
lapse of someone’s pen, then I hope to learn the conceptual distinction”
(Neyman, 1976b).

Because of Fisher's remarkable talent for polemic, the debate never
lacked for overblown rhetoric. He branded Neyman’s position as “childish”
and “horrifying (for] intellectual freedom in the west.” Both parties
called up the heroes of the past, such as Laplace and Gauss, to be their
witnesses. The authority of W. S. Gosset was claimed by both camps.
Fisher described him as a man “actively concerned with research in the
natural sciences” (Gosset worked for Guinness, the brewers), and
claimed that Gosset used his test in the same spirit as had Fisher. In
answer, Pearson published a letter from Gosset stating that a test
“doesn’t itself necessarily prove that the sample is not drawn randomly
from the population even if the chance is very small, say .00001: what it
does is to show that if there is any alternative hypothesis which will ex-
plain the occurrence of the sample with a reasonable probability, say .05,
- . . you will be very much more inclined to consider that the original hy-
pothesis is not true” (E. S. Pearson, 1938, p- 243). Here Gosset made a
strong point for rival hypotheses, although not for cost-benefit considet-
ations. As Hacking (1965, p. 83) put it, the man who first conceived one
of the great tests was now urging “that it is not merely low likelihood
which matters, but rather the ratio of the likelihoods.”

These, then, were vigorous controversies, and they have not ended.
Disputes no less heated have characterized the telationship between
Bayesians and frequentists. So it is especially remarkable that all of these
unresolved controversial issues, conceptual ambiguities, and petsonal in-
sults have been more or less completely suppressed from the textbooks
that have taught significance testing to the customer — the experimenter
in the sciences. The need for personal judgment - for Fisher in the choice
of model and test statistic; for Neyman and Pearson in the choice of a
class of hypotheses and a rejection region; for the Bayesians in the choice
of a prior probability - as well as the existence of alternative statistical
conceptions, were ignored by most textbooks. As a consequence, scientific
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dresearchers in many fields learned to apply statistical tests in a quasi-
mechanical way, without giving adequate attention to what questions

these numerical procedures really answer.

3.5 HYBRIDIZATION: THE SILENT SOLUTION

The intellectual effort of statisticians to provide 2 mathematical foun-
dation for hypothesis testing has had a tremendous impact on the
sciences, especially on biology and the social sciences. In sociology and
psychology, significance testing has become practically the only statistical
tool, and other developments such as confidence intervals, the likelihood
function, or Bayesian inference have been for the most part ignored by
experimenters. In part, this is probably due to the stress Fisher put on
significance testing in the first edition of his 1925 bdok, and to the theory
of cxperimcntal design he providcd, together with signiﬁcancc testing, in
his 1935 Design of Experiments. Although the debate continues among
statisticians, it was silently resolved in the “cookbooks” written in the
1940s to the 1960s, largely by non-statisticians, to teach students in the
social sciences the "rules of statistics.” Fisher's theory of significance test-
ing, which was historically first, was merged with concepts from the
Neyman-Pearson theory and taught as “statistics” per se. We call this
compromise the "hybrid theory” of statistical inference, and it goes with-
out saying that neither Fisher nor Neyman and Pearson would have
looked with favor on this offspring of their forced marriage.
The creation of the hybrid can be understood on three levels — math-
ematical statisticians, textbook writers, and experimenters. On the first

level, there was a tendency to resolve the controversial issues separating

the three major schools by distinguishing between theory and application,
practical-minded people need not be bothered by these
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The inference experts 109

econometrics, to take the most striking contrast, experiment is compara-
tively rare, and the standard statistical tool is regression analysis. It has
often been applied by economists with a lack of imagination that matches
the psychologists’ use of hypothesis testing (McCloskey, 1985). Graduate
students within the social and biological sciences have routinely been
taught to view their statistical tools as canonical, given by logic and math-
ematics. The methods of statistical inference could be seen

uncomfortable with higher mathematics as someone else
province of statistical specialists.

by practitioners
's concern, the

3.6 THE STATISTICAL PROFESSION: INTELLECTUAL
AUTONOMY

Statistical inference, and the accompanying mathematics, have become
the basis for an expertise that extends to an enormous range of disci-
plines and practical problems and that supports a whole profession of
statisticians. The abstracting journal Statistical Theory and Method Abstracts,
a publication of the International Statistical Institute (ISI), lists over 130
journals mainly devoted to statistics, from the Indian Aligarh Journal of
Statistics to the West-German Zeitschrift fiir Wabrscheinlichkeitstheorie und
verwandse Gebiete. Beside the ISI (founded 1885), there are now many other
international statistical organizations, such as the Bernoulli Society for
Mathematical Statistics and Probability. Many industrialized countries

have their own organization for theoretical statistics, one of the oldest
being the Royal Statistical Society, founded in 1834 as the Statistical Society

of London. Universities now often have a separate department for statis-

tics, or even for biostatistics. Inferential statisticians work in many other

departments, such as psychology, economics, and archeology. Statisticians
are consultants in science, industry, and government. More and more we

find statisticians acting as expert witnesses in the courts, and it is debated
whether the way evidence should be combined in the courts can be
modeled using ideas from probability theory (see 7.4; also Eggleston,
1578; DeGroot ez al., 1986).

This professionalization of statistics and of statisticians has several
aspects. Two of them we call autonomy and influence. In this section we
ask how statistics became a discipline per se, where it earlier had been an
appendage of other disciplines like sociology, or biology. That is, how did
statistics become autonomous? In section 3.7, we consider the insti-
tutions of statistics, and ask how statisticians were able to reach out to,
and affect, so many other disciplines and other social institutions,
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ence this tremendous influence? What were its channels and what
needs did it satisfy? How did it change the disciplines involved and how
was it changed itself in the process? Without trying to answer these ques-
tions in depth, we will indicate some of what we think are the key issues.

Spccialized knowledge

A scientific discipline is characterized by a body of specialized knowledge
and skills, and by a complex of institutions, formal and informal, that
guide its development and workings. The specialized knowledge of statis-
ticians consists in methods to determine how data should be gathered, to
analyze and summarize data, to make inferences on the basis of data, and
to propose decisions on the basis of theories, data, and goals. Their skills
include the tacit knowledge needed in the application of this knowledge,
since it often involves a degree of subjective judgment. Those skills are
developed by working as a consultant for fellow scientists and for clients
outside the academic environment, in government, industry, and the like.
The methods the statistician uses are mathematical and abstract. They
do not result from one single idea, but form a network of interrelated
ideas. Most, but not all, use the concept of probability. Many, but not even
most, use the concept of a statistical model. Still, these two concepts, prob-
ability and model, are central to the network of knowledge of the statis-
tician, since even the methods that do not use them, such as exploratory
data analysis (Tukey, 1977a) or distribution-free statistical tests (Bradley,
1968), are often partly characterized by the very fact that they do not use
them! The two concepts are highly abstract, and because they are so ab-
stract they can be applied to, and recognized in, many different situations.
The historical events through which these two abstract concepts were
defined were seminal for the development of statistics as a scientific
discipline.

The concept of probability was defined in the carly 1930s by the Soviet
mathematician A. N. Kolmogorov, who further developed an axio-
matization of comparative probability due to S. N. Bernstein by incor-
porating ideas from set theory and the theory of functions (Maistrov,
[1964] 1974). Of course, long before Kolmogorov, people had referred
to and used the concept of probability. This whole book is 2 testimony to
that. But their use was often tied to what in hindsight appears to be only
a limited application. And their calculations sometimes scem incoherent
to us when they implicitly assume probability to have properties we do
not attribute to it (Shafer, 1978). In his 1933 paper “Grundbegriffe der
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Wahrscheinlichkeitsrechnung,” Kolmogorov laid down axiomaticall
what properties the concept of probability should have. Probabilit i)s’
'c%cﬁncd as a set-function. It assigns to each set in a “field of scts"yit
probabil.ity," a real number between zero and one. If two sets have m:
clcrpcnts in common, the probability of their union is equal to the sum of
their probabilities. The probability of a certain basic set, the set E of all
clcmcntary.cvcnts, is equal to one. All other sets in the field are subsets of
E. The notion of a random variable is defined as a function from the set E
into thclrcal numbers; prior to Kolmogorov this was taken to be a primi-
tive notion, not defined in terms of other more basic notions Withpthcsc
definitions, Kolmogorov showed that there are striking a;lalogics be-
tween the notion of the measure of a set and the probability of an event
between the integral and mathematical expectation, and bctwcer;
othogonaﬁty of functions and the independence of rand’oxh variables. In
this way he was able to systematize on the basis of first principles m‘an
results on the law of large numbers obtained by Khinchin Borcly
.Cantcl.h, and Hausdorff. The work of the Russian school of prol;abilist ,
including Chebyshev, Markov, Lyapunov, Bernstein, Khinchin anii,
Kolmqgorov, reestablished probabilty theory as a serious mathen;atical
dxsqplme, which it had not been since new standards of rigor in mathe-
matics were introduced early in the nineteenth century by Cauchy a cd
others (see Schneider, 1987). Its influence reached far beyond the bo};dn
of the Soviet Union: first over Central Europe and then, through tehrS
dxz}s.porzf of the 1930s, all over the world. Many of the now,rctircdg robe
abxh'st's in the United States have their roots in this Central Eurp .
tradition (Gani, 1982). e
. The concept of a statistical model was introduced by Ronald A. Fisher
in 1922,‘ in his fundamental paper “On the Mathematical Foundat'ions f
Thc?rctlcal Statistics.” Fisher did not formally define the concept; he wz
not interested in abstract mathematics, but used an intuitive cl())r;cc tu T
appranh. In fact, it was a citizen of one of the smallc’r Europ caal
countries, the Swede Harald Cramér, who, between 1930 and 1950 nfll)cdir-1
ated bcm./ccn the British and American science of statistics ~ whi’ch was
bascd. malgly in the empirical and experimental tradition ~ and the math-
cmanlcal rigor of the Continental European work in probability theor
He m?d.to unify the two traditions in his 1946 book Mat/aematim? Met/aoa)’, .
of Stamlt{m. This unification has never been complete, and one still fi dJr
prqbabnhty Fbcory typically worked on in dcpartmcx;ts of mathcmalt[ilcsS
Xi]él;cita;:\t:l?}?:? who apply r.csul'ts in prqbability theory to statistical in-’
! 1t own organizational units. Characteristic of this is the
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ﬁsplit, in 1973, of the Annals in Mathematical Statistics, into the Annals of
Statistics and the Annals of Probability Theory.
Still, since Fisher consciously pursued conceptual clarifications in his
1922 paper, we can look at it as introducing the abstract concept of 2
statistical model. In his paper, Fisher cmphasizcd the distinction between
a sample and the population from which the sample is drawn. The popu-
lation may be an actually existing one, as in a survey of the farming com-
munity of a country, but more generally it may be a hypothetical and even
infinite population, as in the set of all possible coin tosses with a certain
coin (where it is assumed that the same type of toss is being performed
and that the coin does not wear out), or the set of all possible repetitions
of a comparative agricultural experiment (where it is assumed that the
same experimental procedure is followed and that the soil does not be-
come impoverished). The tosses actually performed and the trials actually
made are then considered as a random sample from this conceptual popu-
lation. The distinction between population and sample had not been suf-
ficiently heeded by his predecessors, Fisher felt. For instance, they often
talked about a mean indiscriminately, as the average of a sample or as the
average of the population from which the sample is drawn. Fisher used
small Greek letters, like o, for the characteristics of the population, called
parameters, and small Roman letters like 5 for characteristics of the sample
(*,,...,x,). These characteristics he then called szatistics. The para-
meters may be partially unknown and the sample can give information
about these unknown parameters. It is the task of statistical inference,
Fisher stated, to find summaries of the data, that is to obtain statistics of
the data, that contain as much as possible of the relevant information the
data provide about the population and its parameter values. A statistic
that contains the same information as the full data about the population
Fisher called a sufficient statistic.

In abstract terms, a parametric statistical model M consists of a specifi-
cation of an observable variable X, a parameter ©, and for each value of ©
a probability function p(x; 8), that gives the probability of making the
observation X = x when © = 6 (Dawid, 1983). Fisher's idea is that an
observation x is informative about © when p(x; 8) is not the same for all
values 8 of ©. Suppose it is observed that X =x and that p(x; 6,) is larger
than p(x; 8,); then it is said that the likelihood of 8, is larger than the like-
lihood of 6, , and that, on the basis of the observation that X = x alone, 6,
is more likely than 6, .

A statistical model is a very abstract and flexible concept of wide
applicability. For instance, the nineteenth-century problem of measure-

The inference experts 113
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bought by limiting himself to these more restricted families of distri-
“butions (Stigler, 1976). Ironically, Fisher's work was in this respect a
retutn to nineteenth-century ideas, since he often assumed that the
observations, or some known function of the observations, were normally
distributed, thus contributing to the "myth of normality.” Recently, con-
cern about how good statistical methods are under mild deviations from
normality or other classical distribution functions has led to a study of
the "robustness” of these methods (Huber, 1981). Similar concerns have
fueled interest in so-called distribution-free tests (Bradley, 1968).

Still, Fisher's idea of a parametric statistical model is 2 powerful and
unifying concept, and is not restricted to the special kind of models he
studied himself and for which his concepts of statistical inference, such as
the sufficient statistic, seem so appropriate. In fact one may say that the
load carried in the Bayesian approach by the prior probability distri-
bution, is borne by the model in this part of Fisher's analysis of statistical
inference (Hotelling, 1951).

A particularly important kind of statistical model is a so-called stochastic
process, which describes a system that changes over time according to
probabilistic laws. The error-theory models of the nineteenth century
assumed independence of the successive measurements (Lancaster, 1972),
and even the correlational studies, in which measurements like the height
of fathers and the height of sons were obviously not independent, did not
have the dynamic character that one now associates with rime series and
stochastic processes. Interestingly, the probabilistic theory of stochastic
processes is not an outgrowth of the empirical study of random phenomena,
but of the Russian theoretical studies in mathematical probability theory

that culminated in Kolmogorov's axiomatization (see, however, the dis-
cussion of stochasticity in physics in 5.7).

According to Bernoulli's theorem (see 1.7), frequencies of indepen-
dent chance events must converge to the underlying probabilities. When,
nea: the end of the nineteenth century, an explicit interest in the notion
of dependent trials arose, it was still thought by many that this so-called
“law of large numbers” - the term is Poisson’s - is only true for indepen-
dent trials. In the context of a general investigation by the Russian school
of necessary and sufficient conditions for laws of large numbers, A. A.
Markov showed in 1906 that the convergence holds even under con-
ditions of weak dependency (Markov, 1906). What is now called 2 Markov
chain is 2 mathematical model of a process without after-effects, which
describes a physical system in which the probability of transition to another

state depends only on the state of the systemat the given time and not on
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'thc previous history of the process. Questions about dependence and the
importance of the work of Lexis and Karl Pearson were further raised in
aC ;orrcspondlcncc between the probabilist Markov and the statistician
uprov, which became a starting point of a general theory of stochastic
IP:OCCSSCS (Ondar, 1981).. The Swedes, especially Harald Cramér and
fcr;}nan ngd, were again central in combining the mathematical work
of the Russians with the more observational approach of Karl Pear
ancé G. Udny Yule (Bartlett, 1959). -
tochastic processes are now a modeli '

Stochastic pr eling tool for a wide vari
sc1f:(?txﬁ_c ldnsc1phncs: cconometrics, meteorology oceanography :Zrcliztl};gjrf
epidemiology, plant and animal ecolo 5 ics, ar ,

| ani gy, chemistry, physics, architect
:1:13 c;slrinology, to mention just a few (Gani, 1986). For the social scic:;:s,
(Qz tcl ver,lgg gart, what Adolphe Quetelet expected from “social physics”
ctelet, ; see also 2.2), by making i i i
, g it possible to explain soci

}t)r};f;cils aimd.to ma{l«;l short-range predictions (Bartholomew 19P67) Inogi
cal sciences they provide a way to show the lawli : ]
likeness of

natural phenomena that elude the m cal appro ¢ the
: ore classical approaches, such

regular shape of ripples on a beach (Barndorff-Nielsen, 192;5) o he

3.7 THE STATISTICAL PROFESSION: INSTITUTIONS
AND INFLUENCE

The discioli : . i
slilpl;ne of inferential statistics is characterized not only by a coherent
network of specialized kn
owledge, but also b nstitut
et BF i ledge, Yy a complex of institutions
ormal, that guide its d i ’
' evelopment and work i
clude international i ' e
and national professional izati
! 1ationa organizations and th -
t10¥; of universities where statisticians work. o
e c . . T
InSdtuwcnt}rlajl }intelrnbaltlonal organization is the International Statistical
» which celebrated its centenary jubilee i
: ry jubilee in 1985 (Atki
s eb : (Atkinson and
: lgl;rg,.IESS). It is instructive to compare the ISI when it was founded
n with what it is toda ‘ '
y. At its foundation the ISI was i
 With s intended to b
a continuation of the Internati isti : at
! rnational Statistical Co
2 condn ' ' ngresses, the first of
ohich alls orgamz.cc?, under the leadership of Quetelet, by the Central
e ica (Slommlssxon of Belgium, and held in Brussels in 1853
eumann- '
(e fpailart.,f 1885). These congtesses aimed to formulate uniform
of classification and collecti
o ection to promote | i
e cat ’ nternational
con Palrablhlty oflstatxstxcal data. Their members were mostly directors of
cial statistical bureaus. Som ienti
: e of the scientific me i
mbers hoped, with
Quetelet, that the amassi rical dat
sing of careful and comparabl isti
ucteler, tha < parable statistical data
bring into the open statistical laws and regularities for a future
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“socjal physics.” Thus the congresses had also given a.ttcntion to mctho:s
of statistical data analysis and data representation. Howc.ve;, tb lc
congresses slowly lost their initial zeal and became a victim of their dou cf
goal: to be a meeting place for government officials l“{lth the pq;»vcr o
binding resolutions (which also exposed them to poh'ncal turmoil, as dm
the Franco-Prussian war), and to provide an opportunity for private in Fx
viduals to exchange ideas and arguments of a moral or scientific
nature. The ISI was therefore proposed as a purely free association f;)nal.-
ogous to the Institut de France, where rpembcrs were selected on the asxs.
of their personal qualifications, but with the same gqal as the congresses:
to introduce uniformity in the compilation of statistical data and to pro-
mote and foster the knowledge of statistical sc.icnce. '

The proceedings of the ISI provide intcr;stmg source mat}c}:nal1 f(t)lr.a
comprehensive history of statistics, since on 1ts pages we sec the 3 ash in
styles and interest of statisticians from many dlffcrcgt local traditions.
One such debate concerned the very possibility of using s.am.plcs to get
knowledge about a population, such as the farming community in Edgarm.
In the nineteenth century, statisticians who collected data had relied more
and more on what Georg von Mayr called the ”crschc’ipfendc .Bec?bach-f
tung der primiren sozialen Masse,” that is, ot co‘mp'lctc 1qvcsf1gafion o
the population under study ( Mayr, 1895). Par'ual mvc_sn'g.atxofns were
considered imprecise and unscientific. It was again a statistician from onci
of the smaller European countries, Anders Kiaer, director of the Centra
Bureau of Statistics of Norway, who pressed for using samples, or what
he called “the representative method” (Kiaer, 1898). One of his argu-
ments was that the quality of the data in a sample wogld Oftcr.l be much
better than if the whole population had been invcstl.gatcid,“smcc more
care by better trained interviewers could be exerted. Kiaer s rclplrcscnta-
tive method” did not, however, make use of random sampling; it was 2
systematic search for a sample that agreed .m.xmporr:mc charactznfsncs
with the population at large. These characteristics haf:l to be lcarlnc ;ox:
a complete investigation, a census. Random sampling was only un cl
stood in the beginning of this century (].cnsycn, 1?26). An clz;r y
paper by Jerzy Neyman still battled against Kiaer’s version (.){ sampung
and was important in getting the general idea of randomness in sampling

cepted (Neyman, 1934). '

N Ich the i(mc'rywar [;criod,)organizations appeared that competed w1thdthe
IS, cither in its aim to collect statistics and to set standards for at;;
gathering or in its scientific goals. Among them were the League o
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Nations, the International Labor Organization, the International Insti-
tute of Agriculture, the Econometric Society, and the International
Union for the Scientific Investigation of Population Problems (Zahn,
1934). But it was the Second World War that marked a sharp break in
the history of the ISI, and led to fundamental changes in the
organization, constitution, and aims of the Institute (Nixon, 1960).
Numerous international agencies in the context of the United Nations
took over the administrative functions of the ISL. The ISI was more
narrowly defined as an “international statistical academy” - a voluntary
and scientific rather than an official organization; a community of statis-
tical experts who were to be judged exclusively on their professional
merit, and not on what country or organization they represented (Rice,
1947). Its activity shifted towards theory and methodology. It thus be-
came the international agency of professionalized mathematical Statistics,
and shed all association with semi-governmental activities. Its active
members are now mostly university professors. Of the forty-one con-
tributors to the Censenary Volume (Atkinson and Fienberg, 1985), thirty-
three hold university positions. The ISI recently approved a “Declaration
of Professional Ethics” (International Statistical Institute, 1986).
Departments of statistics as we now know them are successors to the
so-called “statistical laboratory.” The earliest of these influential
laboratories was the Galton Laboratory, endowed by Francis Galton in
1904, whose first director was Karl Pearson. This laboratory took in
advanced students from science and industry to learn statistical methods
that could be applied to the problems of their own field. A few of these
students, such as W. S. Gosset, a chemist by training, became important
pioneers in the mathematics of statistics. Most of them contributed mainly
by mastering existing techniques and applying them to new problems.
Some of their work was published in Biometrika, the journal founded by
Francis Galton, Karl Pearson, and the zoologist W. F. R. Weldon in 1901
to collect biological data of a statistical kind and to spread the statistical
methods and perspective that would promote a biology based on the
study of variation, as opposed to morphological understanding in terms
of ideal types. Pearson’s laboratory institutionalized the new intellectual
structure of statistics, in which statistics was first of all 2 body of math-
ematical tools and formulations which could be applied to an almost
unlimited domain of topics. The laboratory slowly began to attract an
international group of postgraduates. In 1925, when Neyman came from
Warsaw to study with Karl Pearson, only one of the eight students was an
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Englishman. The others were all from the U.S., with .thc(c:xcc:g:xogh(i)rfma
_]apan"&c. The next year brought students from Spam,d ana ,r Omté
India, and Yugoslavia. By that time If’c;rsolri) Zagtn:?sxz?cgsc to incorp
ry into a Department of Applied Sta ics.
thef*‘ilz:grr’zt}(v)rzscncc in Ro}zhamstcd, and then quversxty College,d Lgnciz:;
played a similar fertilizing role. Harold Hotcklllinii, :;k;ol}tg(zrt;eforcg o
' istics and the way it was taug . !
lSr:f(j;:i %?/()Srtfdt War, was a volunteer on t'hc farm durmgh theF?(:ic$;§
year 1929-30 (Hotelling, 1940). In the pc'rlod 1954~4'4, w cg 18 hévm
Galton Professor of Eugenics at University College in Lon 0?1 ( Orldg
succeeded Karl Pearson) more than fifty Pcople frorg all og.crlt ew cdi_’
and from a variety of experimental disciplines - chcmxs;ry, hl-O og\};,o r:dcn
cine, agriculture, and social science ~ came to work with him ( ,
e isher’ stical Methods for Research
The influence of Fisher's first book, Statistica e
Workers, was tremendous (Yates, 1951). It went Fhrough clcvcng moics
in the first twenty-five years of its cxistcncc?, with nclarly 20,00 CO}:nd
sold, and was translated into French, Italian, Span{sh, ‘ Gcr.m:m,r i
Japanese. In that period, analysis of vgriancc f(?und apPhcatxoT:n jé;mml
tural trials, biological assays, indusfsrxlzl experimentation, quality ;
erimental scientific fields. ‘
"m(é)’;:‘(;)f’ tch)fspbroadcst channels for the flow of information from éi\hrop:
to the United States was the Statistics Laboratory qf Iowa Stﬁ:tcd gtctgcs,
the first of the great academic statistical centers in the Un(;tcft Fizhcr.
George W. Snedecor, the Director of the Laboratory, arrange h'or sher
to lecture at two summer sessions in 1931 anc.i 1.956. Snedecor dxrx;s'ch(,ir’S
his teaching and in his well-known book Statistical Metboa’;z mT ; 1: her
methods available to a host of workers in agronomy.and animal hus crz
(Youden, 1951). Other centers for the new ‘cnthusmsm m'stat;s;{cii;;/ ¢
the University of North Carolina at Cha’pcl HlJIl\,I the ;I;rll:ersnty o} ga
r, and Columbia University in New .
) I‘;\cnr?la?;btic most direct influence from Europe on the dc.vcl(lap;cr:)tfoaf
statistics in the United States was I\fIC();anrl’s gccest};:f;,dxcr; V9th,rc -
ition at the University of California a ] .
fixc:iitx{cc[l) Ot;e[ rest of his life. First within thc.Dcpartmcnt of Mstgcngrc:;
and later in a separate Department of Statistics, Neyman (fo[:l;xc 1ilacr ons
statistical laboratory as he had seen it in London: Frgm thls ZS'C’ )tlron_
collaborated fruitfully with a wide variety of scientists, including as
omers, biologists, and meteorologists.
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Statistics goes to war

Neyman'’s arrival in the United States was, by chance, well timed. His
philosophy of statistical inference, brought forward with particular
explicitness in the expression he coined in 1938, “inductive behavior” (in
contrast to “find reductions of data to communicate to fellow research
workers,” as statistical inference was understood by Fisher), fit well the

ticians were not just good in calculating averages and index numbers, byt
could also contribute to the National Defense Program in such areas as
quality control, sample surveys, experimentation, personnel selection,
gunnery and bombing, and weather forccasting (Eisenhart ef 4l 1940).

In fact it was through their activities in the Second World War that
statisticians were able to influence so many other disciplines and social jn-
stitutions. Both the positive reception of statistics — by engineering and
the social sciences, by industry and the military - and jts departmental
autonomy were furthered by the war effort (Fienberg, 1985; Barnard and
Plackett, 1985). It led to new developments along the lines of Neyman'’s
doctrine of inductive behavior, which was made more prudent in the
theory of sequential analysis and more mathematical in the theory of
statistical decision functions, both developed by Abraham Wald and pub-
lished after the war (Wald, 1947, 1950). The theory of statistical decision
functions was given a subjective twist in the petsonalistic or Bayesian de-
cision theory of L. J. Savage (Savage, 1954).

In the United States during the Second World War, there were several

major groups of statisticians working under contract of one of the
branches of the armed forces, notably at Columbia (the Statistical

- Research Group, or S.R.G, under W. A, Wallis), at Princeton (under S.

S. Wilks), and at Berkeley (under Neyman). Sequential analysis origi-

nated in the S.R.G. at Columbia through a suggestion of a Navy officer,

an ordnance expert at the US, Naval Proving Ground in Dahlgten,
Virginia. He argued that one could see after the first so many rounds that
the experiment need not be completed, either because the new method
was obviously superior or obviously inferior. This idea was picked up by
Wallis and the economist Milton Friedman and transformed by Abraham

T Y S T
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3.8 CONCLUSION

The agricultural chemist Johnston found himself cpnfrontcd with a pbr;li:
lem concerning experimental design and the inference from o
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vational data to causal hypotheses. These problems were not pursued by
trying to analyze the laws that govern the subject matter under investi-
gation - in Johnston's case, the physiology and chemistry of plants.
Because of the variation displayed by natural objects in their natural en-
vironment, questions like this one have come to be studied in a quite dif-
ferent way. In fact, this agricultural example is typical of problems in a
variety of disciplines that scientists are now accustomed to investigating
according to a canon of research defined by the new abstract discipline of
scientific inference, mathematical statistics. Bits and pieces of this disci-
pline emerged here and there; they have accompanied the entire history
of probability. Yet this combination into 2 single unified conceptual
structure and methodological doctrine came late and is far from being
completed. Alternative schools of inferential statistics compete, and
doubtful compromises dominate in the practice of social scientists (see
chapter 6). Nevertheless, impressive conceptual and institutional achieve-
ments, together with economic needs and political interests, have shaped
2 new profession of inference experts.
In the upbeat tone of his 1953 presidential address to the Royal
Statistical Society, which provided the epigraph to this chapter, R. A.
Fisher speculated that "hidden causes have been at work for much longer
than the period of manifest efflorescence, preparing men’s minds, and
shaping the institutions through which they work, so that, quite suddenly
when the academic tools had become sufficiently sharp and accurate, or
perhaps, equally important, sufficiently realistic, there was no end to the
number of applications impatiently awaiting methods which could, really,
deliver the goods” (Fisher, 1953). The philosopher and the historian have
to be more fastidious, and recognize that applications are equally often
created because the tools are there to address them, and that existing
problems come to be redefined in terms of the new concepts that accom-
pany these tools. We have seen in this chapter some striking instances of
this, such as the change in the ideal of a scientific experiment and in the
meaning of causality. This is perhaps most clearly exemplified in psy-
chology, which was transformed by statistics from a science asking for
general psychological laws to a discipline dedicated to searching for causal
factors that operate on the average in 2 population. We will return to this
in chapter 6.

The changes brought by the new methods of statistical inference are
ubiquitous and profound. In carly modern science, knowledge had to be
publicly demonstrated, and it was customary to have witnesses sign a docu-
ment that the events reported had actually happened. But these witnesses
were not required to be able to replicate the demonstrations, whose
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Y What does chance ever do for us?
William Paley (1802)
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Chance and life: controversies in modern biology

A

4.1 INTRODUCTION

Developments in probability theory and statistics have certainly had a
great impact on biology. But the rise and role of probabilistic and statistical
thinking in biology is no mere reflection of those developments. In the
first place, as was discussed in chapter 2;"‘gl\aiology itself has had a signifi-
cant influence on statistical thought. In‘the second place, there are
episodes having to do with the rise and role ‘of probabilistic thinking in
biology that are neither greatly illuminated by,nor shed much light on,
the development of what we have come to call “probability theory” and
“statistics” proper. These latter developments m:ﬁqu have to do with
problems internal to biology.

In continuing the discussion begun in previous chapters about atti-
tudes of biologists toward chance, let us now shift our herspcctivc and
look at the topic from the point of view of biologists gua biologists with
their specifically biological concerns in mind. A number of the episodes
to be discussed involve the most recalcitrant biological controversies of

modern times: controversies concerning vitalism, mechanism, teleology,

essentialism, and levels of organization and explanation. The ‘special

senses of “chance”

invoked in each of these controversies, and the vi‘xjous

motivations for or against takirig chance seriously in each case are bound

up with the terms of the dispute in question. The senses of chance to be

discussed

here are thus quite varied, and do not all (though some

neatly into conceptual frameworks designed to accommodate noti
change in other areas of science.
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