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You might imagine that you have done up to say a thousand trials ang
if that is the sort of thing you had in mind before you started experi-
menting you will probably be satisfied to use as a distribution when »
is not a half, something roughly uniform, though possibly concen-
trated in a narrow interval covering p = . I do not think you can use
a uniform distribution going the whole way fromp=0top=1,ifjt
is a question of the bias of a coin; for example, you might use some-
thing uniform in arather narrow range or something like p* (1—p)* to
make it smooth. But at the back of your mind you have the idea that
you are going to do an experiment of reasonable size. However, if you
were told that the experiment might become enormously large, and
if you can imagine some possible results of an experiment of that size,
you may decide that you would accept E.S.P. even if p were very close
to 3. Nowif the sigma-age were greater than, say, 10, or something like
that, you would have to think awfully carefully. If you were really
doing this experiment you would have to think of a great many pos-
sible results of the experiment to make sure that you were being con-
sistent; and if you did that, then it may well be that you would decide
to usea very curious sharply peaked prior distribution. But I think you
might well come round to advance the view that if on tail area prob-
abilities the chance was as small as 10~ 1° this would still not be
evidence in favour of E.S.P. But after it really happened, you might
begin to doubt your original Jjudgements. So you must try to think out
in advance and decide on a prior distribution which would enable you
to be consistent whatever happens. That is in theory. It might be very
difficult. You do not need more than one test depending on the inten-
tions of the experimenter. In principle you must think of al] possibilit-
les and then decide on a single test which will depend on a single prior
distribution.

Mr C. B. WINSTEN: What I was going to say is so closely related to
what Dr Good was saying that I hasten to follow him as closely as T
can. I, too, want to emphasize that one often may learn about “initial
probabilities’ from final probabilities, and I feel this affects the argu-
ment quite considerably. Sometimes, as in simple urn experiments,
one deduces final probabilities from initial probabilities. On the other
hand, one can imagine a situation like that Dr Good has just described
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in which one has a set of hypotheses which we can call Hy, H,, H;,
say, and one can suppose a set of observations producing likelihoods,
I;, L, 5. Then one can imagine an observer being given a set of likeli-
hoods, and then being asked which ratio of experimentally obtained
likelihoods for hypotheses 2 and 3 he would accept as establishing
these hypotheses as having about equal credence, or acceptability, or
posterior probability. As a result of this procedure one is establishing
the ‘prior probabilities’, if one can call them that. The content of
Bayes’stheoremin thissituationis, however, completely different from
that in the urn case; indeed, it seems to me mistaken even to pose the
whole thing as being an application of Bayes’s theorem. Instead of
saying that the posterior probability is proportional to prior prob-
ability times likelihood, one is deducing from the observer’s rating of
the likelihood scales what weights are needed to establish equal
posterior belief.

The term “weight’ is preferable to the term ‘probability’ because
if one is going to use the term probability for something which you
obtain from this merging of the likelihood scales, then one must be
visualizing carrying out a further experiment later. The numbers one
is going to obtain from the weights and the likelihood ratios of the
present experiment are then going to be used as weights for the likeli-
hoods of the next experiment. And only in that situation is it in fact
worthwhile to try and set up what one might call an analogue of
Bayes’s theorem. Otherwise it seems to me that one simply tries to
discover somebody’s degrees of belief from his scaling of the likelihood
function. In that situation it seems to me that one should not really
even mention Bayes’s theorem. One should mention the correspond-
ing formula as a possible summary of the ways in which people treat
a summing up of a likelihood choice criterion.

I do not know whether in some situations one could get inter-
mediatecases. I wonder in the light of this whether Professor Barnard’s
distinction between acceptabilities and probabilities is concerned with
whether one can carry out a particular sort of numerical analysis on
the choices between likelihoods.

BARNARD : Tocome back to this point about likelihood and normal-
ization, and in a way back to the general issue, Professor Savage, as I
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understood him, said earlier that a difference between likelihoods ang
probabilities was that probabilities would normalize because they
integrate to one, whereas likelihoods will not. Now probabilities
integrate to one only if all possibilities are taken into account. This
requires in its application to the probability of hypotheses that we
should be in a position to enumerate all possible hypotheses which
might explain a given set of data. Now I think it is just not true that
we ever can enumerate all possible hypotheses. We must always leave
it open that someone with more imagination, or more knowledge, or
more information can come along later and suggest an explanation of
the fact with which we are confronted that we just had not thought of at
all. If this is so we ought to allow that in addition to the hypotheses
that we really consider we should allow something that we had
not thought of yet, and of course as soon as we do this we lose the
normalizing factor of the probability, and fromthat point of view prob-
ability has no advantage over likelihood. This is my general point,
that I think while I agree with a lot of the technical points, I would
prefer that this is talked about in terms of likelihood rather than prob-
ability. I should like to ask what Professor Savage thinks about that,
whether he thinks that the necessity to enumerate hypotheses ex-
haustively, is important.

SAVAGE: Surely, as you say, we cannot always enumerate hypotheses
so completely as we like to think. The list can, however, always be
completed by tacking on a catch-all ‘something else’. In principle, a
person will have probabilities given ‘something else’ just as he has
probabilities given other hypotheses. In practice, the probability of a
specified datum given ‘something else’ is likely to be particularly
vague — an unpleasant reality. The probability of ‘something else’ is
also meaningful of course, and usually, though perhaps poorly defined,
itis definitely very small. Looking at things this way, I donot find prob-
abilities unnormalizable, certainly not altogether unnormalizable.
Whether probability has an advantage over likelihood seems to me
like the question whether volts have an advantage over amperes. The
meaninglessness of a norm for likelihood is for me a symptom of the
great difference between likelihood and probability. Since you ques-
tion that symptom, I shall mention one or two others. :




DISCUSSION 81

First, if we have a probability density of a parameter «, say p(x),
and reparameterize using, for example, B = o3 as the new parameter,
then the density of 8 at the value corresponding to « is 1p(e)/e*. But
if Pr(x|e) is a likelihood in e, the likelihood in B at 3 =¢ is simply
Pr (x]o). Again suppose that x is known to have a Poisson distribution
with mean o~ ! and that x =0 is observed. The likelihood is then
“exp(—a” 1y and it is hard to see how that function, which approaches
1 as o — oo, could be interpreted as a probability density. The essence
of the example is preserved, and the idea of continuous distribution is
avoided, if « is assumed to be confined to positive integral values.

On the more general aspect of the enumeration of all possible
hypotheses, I certainly agree that the danger of losing serendipity by
binding oneself to an over-rigid model is one against which we cannot
be too alert. We must not pretend to have enumerated all the hypo-
theses in some simple and artificial enumeration that actually excludes
some of them. The list can however be completed, as I have said, by
adding a general ‘something else’ hypothesis, and this will be quite
workable, provided you can tell yourselfin good faith that ‘something
else’ is rather improbable. The ‘something else’ hypothesis does not
seem to make it any more meaningful to use likelihood for probability
than to use volts for amperes.

Let us consider an example. Offhand, one might think it quite an
acceptable scientific question to ask, ‘What is the melting point of
californium?’ Such a question is, in effect, a list of alternatives that
pretends to be exhaustive. But, even specifying which isotope of
californium is referred to and the pressure at which the melting point
is wanted, there are alternatives that the question tends to hide. It is
possible that californium sublimates without melting or that it
behaves like glass. Who dare say what other alternatives might obtain ?
An attempt to measure the melting point of californium might, if we
are serendipitous, lead to more or less evidence that the concept of
melting point is not directly applicable to it. Whether this happens or
not, Bayes’s theorem will yield a posterior probability distribution
for the melting point given that there really is one, based on the corre-
sponding prior conditional probability and on the likelihood of the
observed reading of the thermometer as a function of each. possible
melting point. Neither the prior probability that there is no melting
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point, nor the likelihood for the observed reading as a function of
hypotheses alternative to that of the existence of a melting point entey
the calculation. The distinction between likelihood and probability
seems clear in this problem, as in any other.

BARNARD: Professor Savage says in effect, ‘add at the bottom of the
list H;, Hy, . . . “something else” *. But what is the probability that a
benny comes up heads given the hypothesis ‘something else’. We do
not know. What one requires for this purpose is not just that there
should be some hypotheses, but that they should enable you to com-
pute probabilities for the data, and that requires very well defined
hypotheses. For the purpose of applications, I do not think it is
enough to consider only the conditional posterior distributions
mentioned by Professor Savage.

LiNDLEY:Tam surprised at what seems to me an obviousred herring
that Professor Barnard has drawn across the discussion of hypotheses.
I'would have thought that when one says this posterior distribution is
such and such, all it means is that among the hypotheses that have
been suggested the relevant probabilities are such and such; con-
ditionally on the fact that there is nothing new, here is the posterior
distribution. If somebody comes along tomorrow with a brilliant new
hypotheses, well of course we bring it in.

BARTLETT: But you would be inconsistent because your prior
probability would be zero one day and non-zero another.,

LiNpLEY: No, it is not zero. My prior probability for other hypo-
theses may be €. All T am saying is that conditionally on the other
1 — ¢, the distribution is as it is,

BARNARD: Yes, but your normalization factor is now determined
by €. Of course ¢ may be anything up to 1. Choice of letter has an

emotional significance.
LinpLEY: I do not care what jt is as long as it is not one.

BARNARD: Inthat event two things happen. One s that the normalis-
ation has gone west, and hence also this alleged advantage over
likelihood. Secondly, youarenotina position to say that the posterior
probability which you attach to an hypothesis from an experiment
with these unspecified alternatives is in any way comparable with
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another probability attached to another hypothesis from another
experiment with another set of possibly unspecified alternatives. This
1s the difficulty over likelihood. Likelihood in one class of experiments
may not be comparable to likelihood from another class of experi-
ments, because of differences of metric and all sorts of other differ-
ences. But I think that you are in exactly the same difficulty with
conditional probabilities just because they are conditional on your
having thought of a certain set of alternatives. It is not rational in
other words. Suppose I come out with a probability of a third that the
penny is unbiased, having considered a certain set of alternatives. Now
I do another experiment on another penny and I come out of that case
with the probability one third that it is unbiased, having considered
yet another set of alternatives. There is no reason why I should agree
or disagree in my final action or inference in the two cases. I can do
one thing in one case and another in another, because they represent
conditional probabilities leaving aside possibly different events.
LiNDLEY: All probabilities are conditional.

BARNARD: I agree.

LinpLEY: If there are only conditional ones, what is the point at
issue?

Professor E. S. PEARSON: T suggest that you start by knowing
perfectly well that they are conditional and when you come to the
answer you forget about it.

BARNARD: The difficulty is that you are suggesting the use of prob-
ability for inference, and this makes us able to compare different sets
of evidence. Now you can only compare probabilities on different sets
of evidence if those probabilities are conditional on the same set of
assumptions. If they are not conditional on the same set of assump-
tions they are not necessarily in any way comparable.

LiNDLEY: Yes, if this probability is a third conditional on that, and
if a second probability is a third, conditional on something else, a
third still means the same thing. I would be prepared to take my bets
at 2to 1.

BARNARD: Only if you knew that the condition was true, but you
do not.
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Goobp: Make a conditional bet.

BARNARD: You can make a conditional bet, but that is not what we
are aiming at.

WINSTEN: You are making a cross comparison where you do not
really want to, if you have got different sets of initial experiments. One
does not want to be driven into a situation where one has to say that
everything witha probability of a third has an equal degree of credence,
I think this is what Professor Barnard has really said.

BARNARD: It seems to me that likelihood would tell you that you lay
2 to 1 in favour of H; against H,, and the conditional probabilities
would be exactly the same. Likelihood will not tell you what odds you
should lay in favour of H; as against the rest of the universe. Prob-
ability claims to do that, and it is the only thing that probability can
do that likelihood cannot.

SAvAGE: I agree very much with Mr Lindley in this discussion. As I
said inmy remarks [on p. 80], inso faras I aminterested in probabilities
conditional on ‘not something else’, neither the probability of ‘some-
thing else’ nor the probabilities conditional on this hypothesis are
relevant. Also, it is not precluded that I should have probabilities
given the hypothesis ‘something else’; the operational meaning of
such probabilities is the same as that of any others, though they are
likely to be particularly intuitive as opposed to reasoned.

Cox: I wish to make a technical comment on the idea of a simple
test of a null hypothesis. Suppose that our simple null hypothesis says
that the density of the observations is fo(x), and that the test consists
in calculating the function #(x) and regarding large values of #(x) as
evidence against a null hypothesis. Suppose we consider the following
family of hypotheses:

Jo(x) = fox) egt('v)/ffo(x) 016 gy,

That is a family of hypotheses depending on the parameter §; when
6 = 0 it reduces to the null hypothesis. Clearly the uniformly most
powerful test of 8 = 0 is based on large values of . Thus the choice of
the statistic ¢ is mathematically equivalent to postulating a family of
alternative hypotheses. Correspondingly, this general class of alterna-
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tives for all #leads to a class of simple tests of significance. So Isuggest
that the distinction between setting up families of alternatives and
using a simple test of significance is primarily a verbal distinction. It
may still be important, but there is no working difference between the
two in the end; of course the argument cuts both ways.

BARNARD: That would suggest that Daniel Bernoulli was concerned
with hypotheses which said that the probability of getting particular
configurations of the poles of the planets was some sort of function
eﬁ‘*’, where w is the area of the smallest circle on the sphere which will
enclose them all. Now this is clearly not what he had in mind, is it ?

SEVERAL SPEAKERS: But it leads to an identical answer.,

BARNARD: All he had in mind it seems to me was that if the planets
really lie close together, that is something which could probably be
explained dynamically, and he very legitimately said, before we start
doing this, before we construct alternatives, let us see if we need to.
Let us try the simple single hypothesis first. If the data do not fit that,
then it is worth while going ahead. If it is consistent with the data Jet
us not waste our time.

PEARSON: But he had a certain kind of alternative in mind. T do not
think you need be able to define the hypotheses precisely. You can
choose the test without that. If he had in mind the alternative that
there was some sort of repulsion, so that the poles would have got as
far apart as possible, he would probably have used another kind of
test. So the alternatives were affecting the test he used.

BARNARD: Yes, I quite agree with that, but the alternatives which
were affecting the test were not statements of probabilistic hypo-
theses. Therefore I think we in fact agree that significance tests are
sensible things to do.

BARTLETT: I think thisisa point that Professor Anscombe has made
also. If you have rather vague alternatives you can justify classical
tests of significance.

WINSTEN: T would like to return to the question of Dr Good’s
and my remarks. Is measuring prior probability from how different
people react to different likelihoods different from proceeding in
Professor Savage’s way, before the experiment starts ?
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SAVAGE: It is not different in the sense of referring to different kinds
of probability. But it is very valuable to be reminded that if one takes
consistency very seriously it is equally legitimate to argue in either
direction.

Mr R. Sysxk1: I would like to add that the use of the Bayes approach
was defended by the Polish mathematician H. Steinhaus as early as
1950. Since then, he and his followers have published several papers
dealing with fundamentals and industrial applications (Steinhaus,
1950, 1954 ; Rajski, 1954, 1958).

On the lighter side of the subject it may be of interest to mention
that behind the Iron Curtain Bayes’s hypothesis has been mixed up
with political implications. Probability Theory as such presents
ideological difficulties for communism. See, for example, a curious
statement by Gnedenko and Kolmogorov (1954, p. 1), which reads:
“In fact, all epistemologic value of the theory of probability is based
on this: that large-scale random phenomena in their collective action
create strict, non-random regularity.” Using Bayes’s hypothesis,
Steinhaus and others overcame this ‘official” interpretation, and thus
provided possibilities for the unhampered development of Probability
Theory.

Finally, I wish to ask how far the theory of Subjective Probability
is modified, if at all, when events are specified by abstract valued
random variables. There are here several intrinsic difficulties and
much depends on the topology of the range space.

SAVAGE: Your final question is a mathematical one rather apart
from the main themes of discussion here. To say something about it,
de Finetti has always maintained that countable additivity and the
attendant restriction of measures to o-algebras of events are not an
essential part of the probability concept. He makes a good case for
the idea that probabilities should in principle be thought of as defined
for all events. In consequence, many of the mathematical incon-
veniences of strange range spaces that have been discovered in recent
years seem to drop away as side issues.

BARNARD: Can I follow that with a question about de Finetti’s
attitude to the non-simply additive random distribution on the sphere.
I mean Hausdorff’s example (Borel, 1926) in which almost the whole
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sphere is divided into three mutually exclusive sets, 4, B and C, such
that 4 is congruent to B (in the sense that a rigid rotation of the sphere
will make A coincide with B), and B to C. The extraordinary
feature is that the set A4 is also congruent to the union of B and C.
This shows that you cannot have a random distribution on the sphere
which is even finitely additive. What does de Finetti say about that?

SAVAGE: I think he would say something like this. Suppose we are
trying to make a mathematical model of someone’s opinions about
where on the earth a certain meteorite is. The person may be so rash
as to blurt out that he always regards congruent sets on the surface of
a sphere as equally probable. But Hausdorff’s example shows that the
person’s opinions cannot really have this property. In short, a person
who had opinions about all sets on the sphere would have to assign
unequal probabilities to some pairs of congruent sets.

For my own part, it makes me dizzy to talk about all the subsets of a
sphere; that is an awful lot of sets. From a practical point of view, it
is enough to know the probabilities of polyhedral sets. Certainly it is
more than enough to know the probabilities of all Borel sets. While
agreeing with de Finetti that there is no absolute place to draw
the line and that no class of sets should be regarded as not having
probabilities, I would underline that in practical computations the
probabilities of only a relatively few and simple sets are actually
used.

Goop:Ithink you need to equate probability with exterior measure,
if you are going to allow non-measurable sets.

BARNARD: Then you will not have an additive system.

Goobp: Thatisallright, for measurable sets it comes to the same thing.
One is never interested in non-measurable sets in practice.

Cox: I would like Professor Savage to elaborate on remarks he made
in his paper about the difficulty of justifying randomization from a
strict Bayesian point of view. Part of the solution here may lie in
attaching a particularly high utility to experiments for which many
people can assign a reasonable prior distribution. If one thinks solely
of a particular experiment desiring to produce closest possible esti-
mates of a particular difference, then it seems reasonable sometimes
not to randomize. One may do what Professor Savage said, namely




88 THE FOUNDATIONS OF STATISTICAL INFERENCE

to think up every little bit of information available and put it al]
together, and do what seems most likely to produce a precise estimate,
But such an experiment may have very little value to anyone else,
because not being aware of all the particular technical details, it
would not be at all clear that there is not a tremendous systematic
error in the experiment. One important property of randomization is
that it makes the data reasonably convincing to other people as well
as to oneself. Of course this is only half the story ; randomization may
Increase accuracy by removing unsuspected biases. This aspect is
particularly important in large experiments where bias is more
important than random error.

SAvAGE: I think you lay your finger on the objectives of randomiz-
ation, to make the experiment useful to others and to guard against
one’s own subconscious. What remains delicate and tentative for me
is to understand when, and to what extent, randomization really can
accomplish these objectives.

My doubts were first crystallized in the summer of 1952 by Sir
Ronald Fisher. ‘“What would you do,” I had asked, ‘if, drawing a
Latin square at random for an experiment, you happened to draw a
Knut Vik square?’ Sir Ronald said he thought he would draw
again and that, ideally, a theory explicitly excluding regular squares
should be developed. As I have learned since, other statisticians have
had, and worked on, this same idea; see, for example, Jones
(1958), Yates (1951a, b). This illustrates once more that one need not
be a Bayesian to arrive at criticisms to which the Bayesian is led
systematically.

The possibility of accidentally drawing a Knut Vik square or
accidentally putting just the junior rabbits into the control group and
the senior ones into the experimental group illustrates a flaw in the
usual reference-set argument that sees randomization as injecting
‘objective’, or gambling-device probabilities into the problem of
inference. If the randomization and the experiment were so executed
by an automaton that no one knew which Latin square had been
drawn or which animals had been put in the control group, the argu-
ment would, I suppose, apply. But, in fact, this information is not,
and ought not to be, kept from the experimenter. And he ought not,
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in principle, to withhold it from those to whom he communicates his
results.

In practice, we may hope, if the experiment is rather large and so
designed as to control the variables that (subjectively) look most
important, then randomization will almost always lead to a layout
that does not look excessively suspicious to any given observer. But
this hope needs serious investigation. Perhaps randomization is even
one of the most efficient ways to arrive at such widely acceptable
layouts. (Such rumours as that artists can make more random-looking
designs than random number generators can are a little disquieting
to this suggestion.)

In any event, randomization does remove an important possibility
of personal interference, for anyone who believes that the randomiz-
ation did take place according to Hoyle.

Many statisticians agree that an analysis of an experiment ought
not be chosen at random. We think it wrong, for example, to break
ties at random or to try to escape from the Behrens-Fisher problem
by artificially pairing observations. But it has been puzzling to under-
stand why, if random choices can be advantageous in setting up an
experiment, they cannot also be advantageous in its analysis. The
discussion Dr Cox and I have been giving of randomization seems to
lead to an answer to this question. In making an analysis, there is no
need to resort to chance to find a compromise analysis that will nearly
suit everybody, for each interested person can in principle make for
himself the analysis he thinks best. Attempting a compromise can only
lose some of the relevant knowledge won by the experiment. Nor can
randomization defend against the dangers of subconscious or con-
scious bias present at the analysis stage.

The arguments against randomized analysis would not apply if the
data were too extensive or complex to analyse thoroughly by the
individuals concerned. In such a case study of the data might itself
become an empirical study based on sampling. Monte Carlo methods
might be used. Or one of many possible expensive analyses might be
determined in part by randomization in the hope of nearly pleasing
everyone,

"It seems to me that, whether one is a Bayesian or not, there is still
a good deal to clarify about randomization.
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BARTLETT: I think this discussion does indicate a certain tendency
to compromise both from the Bayesian point of view and from the
frequency point of view. On the one hand those who work in terms of a
frequency theory avoid certain possible designs because of notiong
and prior probabilities of what they might contain. On the other hand
the fact that the Bayesian would not adopt a perfectly chosen
and systematic design, for whatever reasons, seems to represent
a certain compromise, in the direction of introducing objective
probabilities.

SAVAGE: From my point of view, the exploitation, in personal rela-
tions, of the fact that many people coincide in certain judgements is
not a compromise. It does of course point up the common sense
behind the belief that objective probability is a definable notion.

Goop: I think the purpose of randomization from the subjectivist
point of view is to simplify the analysis by throwing away some of the
evidence, deliberately.

SAVAGE: That is a terrible crime, to throw away evidence.

Goobp: Butitisevidence which is subjectively judged to be irrelevant,
If you had an experiment in which you had to randomize say a
thousand objects, say cups of tea, you can never be sure that you had
excluded everything that would not be eventually discovered by some-
one to contain some peculiarities. And your judgement would be the
Jjudgement to suppress all these details.

Cox: I think Professor Savage’s argument leads to what seems to me
an acceptable practical conclusion, that randomization is very useful
in large and moderate-sized experiments, but is not really very much
good in very small single experiments.

WINSTEN: It means also that you should publish the actual design
of the Latin square, or whatever it is you chose, so that people can see
whether perhaps they have not got a hypothesis of the other sort that
they can fill in.

Mr E. D. vaN REesT: I am rather surprised that previous speakers
havetended to minimize the importance of rand omization. Randomiz-
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ation seems to be useful whenever knowledge is absent, and I think
that is in line with all the previous discussion. Professor Savage dis-
cussed the example of animals, recognized to be in two classes, senior
and junior.

Directly you can recognize the different classes, they are not a
subject for randomization. In other words, we experiment over most
of those classes of which we have knowledge and randomize where
we have no knowledge. Fisher and Professor Savage rejected a regular
arrangement which turned out as the result of randomization. That is
exactly explainable in the same way: after the randomization has been
done a classification has been reco gnized. The only reason for throw-
ing it away is that it has not been recognized before starting. You use
randomization to performan averaging function, the averaging out of
errors, and it is therefore just as legitimate in small experiments as in
large experiments, but it is not so effective. It still needs to be done
even though it is not so effective.

BARTLETT: This is the point of view of the non-Bayesian, the usual
Fisherian approach. Are you suggesting that your comments justify
randomization from Professor Savage’s point of view?

vANREsT: Tome it does notseem to matter which point of view you
take.

SAVAGE: Suppose we had, say, thirty fur-bearing animals of which
some were junior and some senjor, some black and some brown, some
fat and some thin, some of one variety and some of another, some
born wild and some in captivity, some sluggish and some energetic,
and some long-haired and some short-haired. It might be hard to base
a convincing assay of a pelt-conditioning vitamin on an experiment
with these animals, for every subset of fifteen might well contain
nearly all of the animals from one side or another of one of the
important dichotomies. The analysis of covariance (or analysis of the
experiment as an unbalanced incomplete multifactor experiment)
might give some, but not enough, help.

Thus contrary to what I think I was taught, and certainly used to
believe, it does not seem possible to base a meaningful experiment
on a small heterogeneous group. In particular, the availability of
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technically valid confidence intervals may not really enable us to
make a convincing measurement.

BARNARD: I have often said that I agree with the Bayesian approach
in many situations, especially in industrial problems. I would like,
however, to comment on the type of Bayesian argument that hinges
on the ‘smoothness’ of the prior distribution. It seems to me very
important to recognize just how smooth the distributions-sometimes
have to be for this approach method to give good results. In the
sampling inspection situation mentioned already, one is tempted to
assume that the proportion defective has a very smooth prior distri-
bution say of the f type. This is all right very often for deciding what
you are going to do on the basis of a given sample, but very much not
all right when deciding what size of sample you are going to take or
what kind of sampling you are going in for. It may, for example, lead
youtounderestimate the tremendous advantage of sequential methods
as compared with fixed sample size.

Goop:Ishould like to mention a topic rather different from the ones
we have been discussing previously. What it has in common with
them is in showing that philosophy does have something to offer to
practical statistics.

The question was raised by Popper of how ‘corroboration’ should
be defined; see, for example, Popper (1959, p. 387). He proposed
various desiderata for it, and suggested a formula, with theremark
that better formulae may be found. It is a question of assigning a
meaning to C(H: E| G), meaning and pronounced ‘ the corroboration
of Hprovided by E, given G °. I think Popper missed out a desideratum
which narrows down the field of possible interpretations considerably.
It is this:

If evidence is considered in two parts, E and F, then the corrobora-
tion of H is analytically determined by that provided by E, combined
with that provided by F when E is known.

From this axiom, combined with other mild ones, it follows that
C(H:E|G)must be a function f{P(H|EG)—P(H|G)}, where f(.)is a
differentiable function.*

Two of the interpretations of C(H: E|G) are then I(H: E|G), the

* The detailed analysis has since been published (Good, 1960).
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<unexpectated’) amount of information concerning H, provided by
E, given G, and W(H :EIG), the weight of evidence concerning H
provided by E, given G. Symbolically,

[(H:E|G) = log{P(E|H.G)[P(E|G)},
W(H:E|G) = log {(P(E|H.G)[P(E|H.G)}
[(H:E|G)—I(H:E|G)

— log {O(H|E.G)|O(H|G)},

Il

Il

where O stands for ‘odds’, p/(1—p), where p is a probability, and the
bar stands for negation.

If corroboration has to be a function of P(E|H.G)and P(E |H.G)
alone, then it can be proved to be an increasing function of the weight
of evidence.

A reasonable aim in the design of an experiment would be the
maximization of the expected corroboration, for a given cost in
experimentation, where the corroboration is one of the additive
kinds, such as information or weight of evidence. Which of these two
is more sensible will presumably depend on the narrowness of the
intervals within which we can judge the probabilities P(E|H.G).
Lindley (1956) considered the use of expected amounts of informa-
tion in the design of experiments; in my book (mentioned above) 1
implicitly took it for granted that expected weight of evidence was
relevant.

In order that these remarks should not be misleading, 1 should add
that I still consider, with Savage, that the basic principle of rational
behaviour is the maximization of expected utility. I have not changed
my opinion about this since reading a chapter by F. P. Ramsey over
twenty years ago. But in applications the emphasis is often on the
judgements that can be made with the greatest precision: sometimes
this will be the probabilities, and sometimes the utilities, and some-
times a mixture.

Dr G. M. JENKINS:* It is surprising that one of the features which
has been accepted without much discussion or disagreement in this
symposium is the role played by the likelihood function in statistical

# Dr Jenkins was on leave of absence at the time of the meeting and sub-
sequently sent in the following contribution.




94 THE FOUNDATIONS OF STATISTICAL INFERENCE

theory in so far as it describes the properties of the sample. It is worth
noting that some more discussion is required about the choice of the
likelihood function as a starting point in any theory of inference:

Main interest has centred around the role played by Bayes’s
Theorem. Professors Bartlett and Pearson have indicated that they
would not use Bayes’s Theorem because either they do not recognize
its validity or usefulness, or else, even if they were prepared to grant
it recognition, choose not to use it. Professors Barnard and Savage
and Mr Lindley accept the use and usefulness of Bayes’s Theorem, but
differ in the extent to which they would apply it. Thus Professor
Barnard is prepared to use Bayes’s Theorem if the prior distribution is
capable of objective description in the sense that past records are
available from which some quantitative evaluation may be made,
whereas Professor Savage and Mr Lindley are prepared to use it when
the prior probabilities involved are far more vague in origin.

I think that ignoring Bayes’s Theorem has put much of modern
statistics out of gear with scientific thinking; that one indeed very
rarely collects observations without some prior probabilities or prior
information. In this context, it is necessary to distinguish carefully
between prior information in the form of approximate statements
such as ‘the distribution is normal with given variance’, or ‘the
regression is linear’, from prior distributions which are statements
about the relative frequencies of a given parameter or set of para-
meters derived from previous experience or intuition. Prior informa-
tion in the way of an assumption about the model and about the
distribution or joint distributions of the errors is of course essential
to the writing down of the likelihood function in the first place.
Alternatively we may write down likelihood functions which are
sufficiently robust with respect to the sort of inference that we are
interested in making. :

The distinction between the sort of information which should be
fed into Bayes’s Theorem which marks the difference of approach
between Professor Barnard on the one hand and Professor Savage
and Mr Lindley on the other is best illustrated by means of an example.
In the design of sampling inspection schemes, it is now being accepted
that those based on the use of prior distributions (usually referred to
as process curves) are likely to lead to better results than the purely
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subjective judgements which had been considered previously. On the
other hand there are situations, e.g. when an inspection scheme is
being designed for a new product, in which there is no process curve
available apart from the few results which are inevitably collected
during the process of research and development. In these situations,
it would be foolish to ignore the engineering experience of those who
developed the product and reasonable guesses about the possible
quality of the product may be used in the design of initial schemes
which can then be modified in the light of further evidence about the
process curve.

What is probably required is a new word to distinguish between
prior probabilities of an objective nature and those of a more sub-
Jective or personal nature. To the latter might be ascribed the word
‘hunches?’, although this is certain to meet with objections from some
quarters. What is clear and obvious, however, is the fact that if the
information which is fed into Bayes’s Theorem is vague and possibly
very imprecise, then the corresponding posterior probabilities or
expected losses will reflect this imprecision.

Discussion has also been confined entirely to what may be described
as static theories of inference. All these theories are concerned with
Statements about sets of statistical parameters which are assumed to
be constants of the problem. The notion that one is sampling from
finite or infinite bopulations specified by these ‘fixed’ barameters is
one which has proved useful in the development of statistical theory
up to the present. Reflection will perhaps serve to indicate that this is
a restrictive assumption and one which may eventually prove to be of
limited usefulness in the handling of experimental data.

It is worth noting that Fisher appears at no time to have attached
great importance to this concept. Thus in the use of maximum likelj-
hood, fiducial inference and more explicitly in the use of conditional
inference, Fisher has always thought in terms of the possible values
of the parameters which ‘flow’ from the estimate obtained from the
sample. Thus in conditiona] inference, statements are made using
reference sets generated from within the sample which refer only to
parameters which are of direct interest in the hypothesis being
examined. Thus in applying the conditional argument to the problem
of testing for randomness in binary sequences (and more generally
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about various hypotheses concerning Markov chains), the inference
about independence is made conditional on the number of 1’s or 0’s
in the observed sequence. As pointed out by Cox (1958b), there are
two advantages to this sort of approach, viz. relevance and expedi-
ency. Thus, it is restrictive and unnecessary to assume that we are
sampling from a population for which there is a fixed probability P
for the occurrence of a 1. All that is required is that the proportion of
1’s is not changing violently over the length of the sample. Further-
more, it is expedient to use the conditional approach in problems of a
discrete nature such as those raised in inference about Markov chains
since it leads to the elimination of all the nuisance parameters not rele-
vant to the hypothesis being examined. #

In conditional inference, it is possible to see the germ of what may
be described as a dynamic theory of inference. By this is meant that
the statistical parameters which are effectively regarded as constants
in the classical theory are themselves regarded as being governed by a
stochastic process (usually of a non-stationary type; if it were station-
ary then of course the problem could be redefined in terms of new
parameters relating to the behaviour of the stationary process) in the
dynamic theory. This is clearly more in keeping with. the behaviour of
empirical investigations than the static theory. Thus the inference
problem is regarded as a game of strategy between the statistician and
nature in which the quantities that are being estimated are themselves
changing in an irregular or unpredicatable manner. As further evi-
dence is obtained, new prior probabilities may be fed back into Bayes’s
Theorem and new posterior probabilities calculated only to be revised
at a future date. *

These ideas are implicit in the work of Dr G. E. P. Box and his
associates at the Statistical Techniques Research Group at Princeton
in connection with the optimisation of the mode of operation of
chemical plants by means of the technique known as Evolutionary
Operation. It would seem that what is now required is a formulation
of these concepts in terms of a dynamic theory of inference which
should draw on the existing ideas of the static theories and embody
them in a framework in which there is a feed back of information via
Bayes’s Theorem, i.e. a framework drawing on the theory of servo-
mechanisms.
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SAVAGE:* Let me make explicit, and comment on, a number of
questions that have been brought up during the discussion.

But what if I don’t know my own prior probabilities ?

In spite of the over-formal arguments that we should be able to know
our own prior probabilities by asking ourselves what bets we would
and would not make, we often do not really know them at all well.
We are vague about specific probabilities, as Professor Pearson has
particularly emphasized, and we may not even think of some impor-
tant relevant hypotheses let alone assign probabilities to them, as
Professor Barnard has emphasized. These imperfections in the theory
of personal probability are real and render its conclusions imperfect.
We must, therefore, use the theory circumspectly, checking it fre-
quently with common sense. We must also be prepared to find that
when the sample is, so to speak, too small, an experiment leaves usin a
quandary. Not knowing what to conclude is a reality not to be
escaped by adopting any so-called ‘exact’ theory or rule.

Is Bayesian statistics appropriate to some problems but inappropriate
to others?

I have yet to see any statistical procedure that makes a durable appeal
and cannot be better understood in terms of personal probabilities
than in terms of their denial and, therewith, denial of the applicability
of Bayes’s theorem. Please understand; I am not saying that we
Bayesians have the last word in statistical theory which surely would
prove false, but rather that a dualistic view of statistics does not seem
called for at the present time, and the Bayesian view does seem to
have a good deal to offer for the present.

Ino longer believe that there exists some alternative to turn to when
the subjective method fails to give a satisfactory answer so that there
are two qualitatively different kinds of statistical situations. I used to
be cowed by critics who said, with apparent technical justification, that
certain popular nonparametric techniques apply in situations where it
seems meaningless even to talk of a likelihood function, but I have
learned to expect that each of these techniques either has a Bayesian

* Professor Savage was invited to conclude the discussion.
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validation or will be found to have only illusory value as a method of
inference.

To illustrate the question of an alternative method with the topic of
interval estimation, the theory of subjective probability often justifies
a rather sharply determined belief that an unknown parameter lies in
agiven interval, as explained in the part of my main talk dealing with
precise estimation. If circumstances are not favourable, as, for in-
stance, when only one or two degrees of freedom are available for
estimating a variance, the theory of subjective probability will not
allow us to conclude at all sharply what probability ought to be
associated with a given interval. To put it differently, a very crude
measurement does not overwhelm the differences to be. expected
between personal opinions. Formally, however, the theory of con-
fidence intervals (and the theory of fiducal intervals also) does not
hesitate to base 95 per cent intervals for a variance on one degree of
freedom. To be sure, we all know clearly what a 95 per cent interval
for variance based on one degree of freedom is. It is a mechanical
process so associating with each sample an interval that, no matter
what the actual variance is, the probability that the variance will be
covered by the random interval is 95 per cent. As we all know, this
does not mean that whenever variance is measured with one degree of
freedom you would be willing to bet 19 to 1 after seeing the measure-
ment that the particular confidence interval associated with it includes
the true parameter. Imagine, for example, that two Meccans carefully
drawn at random differ from each other in height by only 0-01 mm.
Would you offer 19 to 1 odds that the standard deviation of the height
of Meccans is less than 1-13 mm? That is the 95 per cent upper
confidence limit computed from chi-squared with one degree of
freedom. No, I think you would not have even enough confidence in
that limit to offer odds of 1 to 1. The only use 1 know for a confidence
interval is to have confidence in it. When such confidence is not
justifiable, is it not empty to say that the confidence interval procedure
solves a problem at which the subjective theory throws up its hands?

What am I supposed to publish?

Sometimes listeners to an exposition of Bayesian statistics get the
misimpression that they are being urged to publish their own opinions
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as their analysis of an empirical study. For example, van Dantzig had
the impression on reading my Foundation of Statistics (Savage, 1954)
that I was urging statisticians to write their own opinions into the
scientific publications of their clients. Because of this misconception,
van Dantzig (1957) called his review of my book ‘Statistical
priestcraft’.

Incidentally, I do not ordinarily refer to the relation between the
statistician and his client in questions of theoretical statistics, for I
regard the separation between statistician and client as an accidental
detail of real life that we should try to overcome. If the client had
sufficient time, energy, and talent he could be his own statistician,
and it seems to me that the first object for theoretical study is such a
statistically well endowed investigator. In practice, I conceive thatthe
consulting statistician should, to the best of his ability, lend his mind
to his client, or make himself one with his client. There are of course
great practical difficulties in bringing about the desired unity and
understanding, and the importance of discussing such problems is not
to be overlooked, but I have not been discussing them here.

Now, when we Bayesians emphasize that all opinions are but
opinion, we do not mean that a scientist publishing the results of his
investigation has said the last word when he tells the world what his
opinion is. Quite the contrary, the first thing that he ought to tell is
what he has observed. In principle, he should do this so well that his
peers will know what happened as well as if they had done the experi-
ment themselves. This is in idealization quite unachievable in practice,
but approximation to it is the core of a serious research report. In
particular, numerical data should be reported as fully as is practical.
The most excusable abbreviations are perhaps attempts to condense
the data by means of sufficient statistics, but even these are often
detrimental, because the sufficient statistics are sufficient only for some
model that is nominally accepted, but that might justifiably be re-
jected in view of some details lost in condensing the data to a sufficient
statistic.

Not in principle as an essential but as a courtesy and perhaps as a
practical necessity, the scientist may present an opinion that he hopes
will be more or less public. His argument would be of the following
form, though some parts of it might be left tacit: ‘I suppose that you
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all, like me, will agree on such and such aspects of our prior opinions
and on such and such a model of the experiment. According to Bayes’s
theorem, we now all have approximately such and such opinions in
common until one of us has more data on the basis of which to revise
opinions.” A simple example occurs implicitly, I think, whenever

someone reports that he made, say, five measurements on a heretofore .

ill-determined physical constant and gives their mean X and standard
deviation s. No one will have a sharp prior opinion about the constant
or the precision of the experimental method, so, if the possibility of
bias in the measurements is neglected, everyone concerned should
have, and will be content to have, for his posterior distribution nearly
a t-distribution on four degrees freedom about % and scaled by §/+/5.
(Of course, the possibility of bias is actually of great practical import-
ance in such an experiment, and gives the best of them a tentative
quality not often reflected in textbook discussion.)

Finally, and quite incidentally, the investigator may choose to tell
his peers some of the things that he feels in his bones without having
any public grounds for conviction. This is frequently done, and of
course serves some practical purposes, but it is an utter misconception
to imagine that Bayesian statistics attaches central theoretical import-
ance to the experimenter’s publication of his personal opinion.
Rather, we hope he will so publish that each reader can best form his
own personal opinion.

How do statistical inferences differ from inferences generally?

Professor Bartlett has stressed that statistical inferences are special

and that mathematical theory can be applied to them in a manner that

is impossible, or at least unusual, outside of statistics. I concur in this,
as I have said in my talk, but Professor Bartlett and I may not be in
perfect agreement as to where this difference resides.

As nearly as I can make out, the most characteristic thing about
problems in mathematical statistics is the role in each of some specific
model, that is, a specific function Pr(x|A). The model reflects what is
taken to be public agreement about the probability of the datum x

as a function of the parameter ). This is the structure even of so-called -

nonparametric problems.
Though I callsuch a well-defined public model characteristic, I am

T
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not really sure to what extent it is essential to statistical practice and
to what extent it is induced by habit or convention. For one thing, in
so far as you accept the likelihood principle you will agree that one
really needs only the likelihood of x as a function of A, not probability
of x as a function of A. Still more, since usually no one really takes the
model seriously as anything but a tentative approximation, we may
some day learn how to express ourselves more accurately and fully.

The public character of practical models sometimes has to do with
large numbers and the statistical order that can come out of chaos. But
symmetryalso can giverise to publicagreement,withoutlargenumbers.

So far as the preceding remarks are concerned, the problem of
inferring something about the bias of a penny from three tosses would
seem to be a problem in statistical inference. When the ensign of small-
sample statistics flew high, it would hardly have been questioned that
this problem or the problem of estimating a variance from one or two
degrees of freedom was a statistical problem. But perhaps today some
of you will feel with me that problems based on excessively small
samples, though they must necessarily merge gradually with those
based on adequate samples, do not quite belong to the main line of
statistics. At any rate, the problems that I have called precise measure-
ment have an important property that can hardly be overemphasized.
For such problems lead, in practice, to posterior opinions that are
nearly the same from person to person. In testing problems, there can
also be public agreement, but not of quite so subtle a kind as in precise
estimation; a test may produce overwhelming practical evidence in
favour of, or against, a hypothesis, but it does not leave everybody
with nearly the same posterior odds. The precision by means of which
some experiments induce practical public agreement also often has its
source in the law of large numbers and the like. Perhaps, in the last
analysis, there is no other source of such precision, but it seems
important to mention that, in principle, a single measurement with an
instrument of known high accuracy nearly induces the same normal
posterior distribution for everyone.

Science or business? Inference or decision?
Some recent discussions of the foundations of statistics have been
complicated by assertions that some statistical theory may be valid
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for business but not for science, and often confused with that distinc-
tion there has been another to the effect that problems of inference are
very different from problems of decision.

Tt does not seem to me that any evidence has ever been brought
forward that a statistical theory philosophically sound for practical
affairs is inappropriate for science or vice versa. Indeed, it seems
unlikely that such a thing should occur at a philosophic level, for
many kinds of business considerations can, and properly do, enter
the loftiest laboratories — how to allocate the time and money of the
laboratory to various problems, for example.

The distinction between inference and decision does seem meaning-
ful to a Bayesian. Inference is for us the art of arriving at pgsterior
probabilities ; decision is concerned directly with action. But, from the
Bayesian point of view, the two concepts are not in disharmony with
one another. Inference is useful in decision, and the posterior prob-
abilities that figure in inference are, like all probabilities, defined in
principle in terms of potential decisions.

What kinds of probability are there?

To me personal, or subjective, probability is the only kind that makes
reasonably rigorous sense, and it answers all my needs for a prob-
ability concept. So far as this conference is concerned, however, 1 do
not urge so extreme a position on anyone else. If I can leave you
thinking that personal probability is interesting and potentially valu-
able for statistics, my main point will have been made, whether you
continue to believe that other concepts of probability are valid or not.

There has been no perceptible defence of the symmetry, ornecessary -

concept of probability here, and I do not really think that concept is
tenable. However, as time will show, Sir Harold Jeffreys, a defender
of the necessary concept, has made a great and lasting contribution to
statistics that has been too little studied.

For some of you, it seems to fly in the face of common sense to deny
the existence of frequency probability. But right philosophy some-
times is counter to common sense, and de Finetti has carefully worked
out a subjectivistic analysis of the situation in which we ordinarily
talk about frequencies, as I have mentioned [on p. 69]. From our point
of view, the truth behind the frequency concept of probability is thus

,,
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a phenomenon clearly explicable in terms of subjective probability.
Similarly, we subjectivists believe that personal probability gives good
insight into the truth behind the quest for a necessary definition. The
capacity to understand, and to take advantage of, other attempts to
formulate a probability concept contributes to the evidence, for me,
that the subjective theory is on the right track.




