














492 Goodman

p value was an "approximate" attempt, with-
out an alternative hypothesis, to get infor-
mation like that provided by likelihood ra-
tios. This is consistent with his vagueness
about the quantitative interpretation of the
p value, his stress on its informal use, and
his fury and frustration at seeing it subsumed
by hypothesis testing.

THE STANDARDIZED LIKELIHOOD

Can likelihood ratios be used in lieu of p
values? Since every alternative hypothesis
has a different likelihood, the comparison of
each of those alternative hypotheses to the
null hypothesis yields a different likelihood
ratio. One proposal, promoted by Fisher and
others (11, 19, 45), is to use the likelihood
ratio of the null hypothesis to the unique
hypothesis with maximum likelihood: with
gaussian data, the hypothesis that the true
population values are equal to the observed
estimates. This ratio is called the standard-
ized likelihood. In figure 1, this would mean
using the alternative hypothesis whose prob-
ability density is centered on the observed
mean. Since this alternative has the highest
likelihood, the standardized likelihood rep-
resents the smallest amount of statistical
evidence that can be attributed to the null
relative to any alternative. It is a "worse case
scenario" for the null. It has a Bayesian
interpretation as the smallest factor, after

seeing the data, by which one can multiply
the prior odds of the null hypothesis to get
the final odds.

For gaussian data, the standardized like-
lihood is equal to exp(—Z2/2), where Z is
the number of standard errors from the null
hypothesis. In table 1, we see that the weak-
est evidence for the null hypothesis is still
3-5 times higher than the associated 2-sided
p value. (Using one-sided p values would
double the disparity.) When p = 0.05, the
support that can be mustered for the best
alternative is only 6.7 times (1/0.15) the
support for the null hypothesis. This means
that, if the null hypothesis has initial odds
of 1.0, p = 0.05 makes the final odds no
lower than 0.15, corresponding to a proba-
bility of 1/(1 + 0.15) = 0.13. In order for
the final probability of the null hypothesis
to be 5 percent (final odds = 1/19) after
observing p = 0.05, its initial probability can
be no higher than 26 percent. If a relation is
thought to be improbable, corresponding
perhaps to an initial null probability of 80
percent, a p = 0.05 would lower this proba-
bility only to 38 percent. The standardized
likelihood needed to make it only 5 percent
probable is 5/95 + 80/20 = 1/76 = 0.013,
corresponding to a p value of 0.003. So even
the strongest quantitative case against the
null is not nearly as strong as the p value
would indicate (18, 19,46).

FIGURE 1. Graphical representation of the derivation of table 1. The curves are the gaussian probability densities
for outcomes under Ho and HA, the null and alternative hypotheses. The likelihood ratio associated with the precise
p value (p •• a) is A/B, the ratio of the curve heights at the observed data. The likelihood ratio associated with the
imprecise p value (p s a) is the ratio of the small striped area to the total shaded area (including the striped area).
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The standardized likelihood seems to
more accurately represent the informal
weight that is put on p values. Epidemiolo-
gists usually describe p values in the 0.02-
0.05 range as representing only moderate
evidence against the null. That description
is better reflected by the corresponding range
of the gaussian standardized likelihood,
0.07-0.15, than by 0.02-0.05. An implausi-
ble association with a p value in that range
will often not be seriously considered, con-
sistent with the calculations above. It has
been suggested that Fisher himself tended to
use in practice a rejection threshold of p =
0.01, which corresponds to a standardized
likelihood of 0.04, in keeping with the no-
tion that a "1 in 20" ratio should be the
evidential threshold to reject the null hy-
pothesis (28). Because the standardized like-
lihood usually varies monotonically with the
p value, the issue of the p value's three- to
fivefold overstatement of the evidence is
sometimes dismissed as a problem of "cali-
bration." Imagine explaining that to a new
student, to a policymaker, or in a court of
law.

IMPLICATIONS FOR SCIENCE

We have seen that there are serious prob-
lems with both the error rate and evidential
interpretations of the p value. When we
combine them, insisting that the p value
must reflect the "correct" type I error to
properly represent the evidence, we create a
potent illusion that produces a host of par-
adoxes and problems, although their source
is rarely recognized. They include the "mul-
tiple looks" problem (47-50), the multiple
comparisons problem (51), how sample size
affects the interpretation of a given p value
(25, 52), the probability of replicating a sig-
nificant finding as a function of the p value
(53), whether one-sided p values should be
used for one-sided hypotheses (54), and the
appropriate thresholds for meta-analyses
(55).

An important aspect of this analysis is the
insight it gives into Fisher and Neyman's
primary concern and source of conflict: the
nature of the scientific method. Neyman's

position was that we should set up rules with
pretrial error rates for hypothesis rejection
and "enjoy the consequences" of their use.
The p value's continuous scale undercut this
by inviting the use of informal induction
regardless of where the pretrial rejection
threshold was set. A p value of 0.04 produces
a different reaction than one of 0.00001,
though both are significant at a = 0.05. The
nature of that different reaction is outside
the domain of deductive probability theory,
and therefore, according to Neyman, outside
the realm of the objective scientific method.

Also inimical to Neyman's position was
the error rate interpretation of the p value.
It implied that, ifp = 0.001, one could state
that one was "enjoying the consequences"
of using a rule with a = 0.001. This under-
mined the reason that error rates had to be
set before the experiment, vitiating the force
of Neyman's rules for the objective conduct
and interpretation of research. The obliga-
tory statement in most research articles, up
values below 0.05 were considered statisti-
cally significant," is an empty exercise in
semantics. It tells us nothing, only that the
word "significant" will be used to refer to
relations where p < 0.05. If only "statistical
significance" was reported, without p values,
then the declaration of the pretrial a would
be critical.

The interpretation of the p value as an
observed a was even more damaging to Fish-
er's position than it was to Neyman's. It
facilitated the incorporation of the p value
into the hypothesis test framework, which
we have seen was anathema to Fisher. It also
implied that evidence and uncertainty about
hypotheses could be described in the lan-
guage of unconditional, pretrial probability.
As Fisher wrote in a letter to a colleague,
" . . . the concept of mathematical probabil-
ity is inadequate to express the nature and
extent of our uncertainty in the face of cer-
tain types of observational material, while
in all cases the concept of mathematical
likelihood will supply very helpful guidance,
if we are prepared to give up our irrational
urge to express ourselves only in terms of
mathematical probability" (56, p. 92).

This "irrational urge" (or the lack of alter-
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natives) may be the source of the dilemma
many epidemiologists face when attempting
to express uncertainty in policy settings.
Suppose we perform a study and obtain p =
0.03 for an unlikely relation. Summarizing
this as "if there is no relationship, there is a
3 percent probability that the observed or
larger effect could have been obtained due
to chance" may not do justice to either our
informal assessment of the meaning of p =
0.03 or our uncertainty about the relation.
It also invites the misinterpretation that
there is a 97 percent chance that the effect
is real. Noting that the gaussian standardized
likelihood for p = 0.03 is 0.10, it would be
more appropriate to say something like, "the
plausibility of some relation, relative to the
plausibility of no relation, is at most tenfold
greater than it was before the experiment."
This uses a correct quantitative measure of
evidence, calls attention to its comparative
nature, and highlights the importance of the
prior plausibility of the association.

measure of inductive evidence. Even though
Fisher, Neyman, and many others have rec-
ognized these as fallacies, their perpetuation
has been encouraged by the manner in
which we use the p value today. One conse-
quence is that we overestimate the evidence
for associations, particularly with p values
in the range of 0.001-0.05, creating mislead-
ing impressions of their plausibility. Another
result is that we minimize the importance of
judgment in inference, because its role is
unclear when postexperiment evidential
strength is thought to be measurable with
preexperiment "error-rates." Many experi-
enced epidemiologists have tried to correct
these problems by offering guidelines about
how p values should be used. We may be
more effective if, in the spirts of Fisher and
Neyman, we instead focus on clarifying what
p values mean, and on what we mean by the
"scientific method."

CONCLUSION

The originators of the statistical frame-
works that underlie modern epidemiologic
studies recognized that their methods could
not be interpreted properly without an
understanding of their philosophical
underpinnings. Neyman held that inductive
reasoning was an illusion and that the only
meaningful parameters of importance in an
experiment were constraints on the number
of statistical "errors" we would make, de-
fined before an experiment. Fisher rejected
mechanistic approaches to inference, believ-
ing in a more flexible, inductive approach
to science. One of Fisher's developments,
mathematical likelihood, fit into such an
approach.

The p value, which Fisher wanted used in
a similar manner, invited misinterpretation
because it occupied a peculiar middle
ground. Because of its resemblance to the
pretrial a error, it was absorbed into the
hypothesis test framework. This created two
illusions: that an "error rate" could be mea-
sured after an experiment and that this post-
trial "error rate" could be regarded as a

REFERENCES

1. Weed DL. On the logic of causal inference. Am J
Epidemiol 1986; 123:965-79.

2. Susser M. The logic of Sir Karl Popper and the
practice of epidemiology. Am J Epidemiol 1986;
124:711-18.

3. Rothman K. Causal inference. Chestnut Hill, MA:
Epidemiology Resources, 1988.

4. Rothman K. Modern epidemiology. Boston, MA:
Little, Brown, 1988.

5. Rothman K. Significance questing. Ann Intern
Med 1986;105:445-7.

6. Greenland S. Modeling and variable selection in
epidemiologic analysis. Am J Public Health 1989;
79:340-9.

7. Cutler S, Greenhouse S, Cornfield J, et al. The role
of hypothesis testing in clinical trials. J Chronic Dis
1966;19:857-82.

8. Walker AM. Reporting the results of epidemiologic
studies. Am J Public Health 1986;76:556-8.

9. Anscombe F. Sequential medical trials. J Am Stat
Assoc 1963;58:365-83.

10. Pratt J. Bayesian interpretation of standard infer-
ence statements. J R Stat Soc B 1965;27:169-203.

11. Edwards A. Likelihood. Cambridge: Cambridge
University Press, 1972.

12. Savage L. The foundations of statistical inference:
a discussion. New York: Wiley, 1962.

13. Barnard G. The Bayesian controversy in statistical
inference. J Inst Actuaries 1967;93:229-69.

14. Goodman S, Royall R. Evidence and scientific
research. Am J Public Health 1988,78:1568-74.

15. Poole C. Beyond the confidence interval. Am J
Public Health 1987;77:195-9.

 at U
niversity of C

alifornia, Los A
ngeles on O

ctober 7, 2011
aje.oxfordjournals.org

D
ow

nloaded from
 

http://aje.oxfordjournals.org/


p Values, Hypothesis Tests, and Likelihood 495

16. Berger J, Berry D. Statistical analysis and the illu-
sion of objectivity. Am Scientist 1988;76:159-65.

17. Diamond G, Forrester J. Clinical trials and statis-
tical verdicts: probable grounds for appeal. Ann
Intern Med 1983;98:385-94.

18. Berger J, Sellke T. Testing a point null hypothesis:
the irreconcilability of p values and evidence. J Am
StatAssoc 1987;82:112-39.

19. Berger J. Are p values reasonable measures of ac-
curacy? In: Francis IS, Manly BFJ, Lam FC, eds.
Vol I. Amsterdam: North-Holland/Elsevier, 1986.

20. Hacking I. The logic of statistical inference. Cam-
bridge: Cambridge University Press, 1965.

21. Cox D, Hinckley D. Theoretical statistics. Cam-
bridge: Chapman and Hall, 1974.

22. Kyburg H. The logical foundations of statistical
inference. Dordrecht, Holland: D. Reidel, 1974.

23. Cox D. The role of significance tests. Scand J Stat
1977;4:49-70.

24. Seidenfeld T. Philosophical problems of statistical
inference. Dordrecht, Holland: D. Reidel, 1979.

25. Oakes M. Statistical inference: a commentary for
the social sciences. New York: Wiley, 1986.

26. Howson C, Urbach P. Scientific reasoning: the
Bayesian approach. La Salle, IL: Open Court, 1989.

27. Johnstone D. Tests of significance in theory and
practice. Statistician 1986,35:491-504.

28. Salsburg D. Hypothesis versus significance testing
for controlled clinical trials: a dialogue. Stat Med
1990;9:201-ll.

29. Box J. RA Fisher the life of a scientist. New York:
Wiley, 1978.

30. Fisher R. Statistical methods and scientific infer-
ence. 3rd ed. New York: MacmiUan, 1973.

31. Neyman J, Pearson E. On the use and interpreta-
tion of certain test criteria for purposes of statistical
inference. Biometrika 1928;20:175-240.

32. Neyman J, Pearson E. On the problem of the most
efficient tests of statistical hypotheses. Philos Trans
R Soc Lond A 1933;231:289-337.

33. Birnbaum A. The Neyman-Pearson theory as de-
cision theory and as inference theory, with a criti-
cism of the LJndley-Savage argument for Bayesian
theory. Synthese 1977;36:19-49.

34. Neyman J. Lectures and conferences on mathe-
matical statistics and probability. 2nd ed. Washing-
ton, DC: US Department of Agriculture, 1952.

35. Bickel P, Docksum K. Mathematical statistics. San
Francisco: Holden-Day, 1977.

36. Barnes R. Who took the "p" out of statistics? J
VascSurg 1989; 10:100-3.

37. Browner W, Newman T. Are all significant p values
created equal? The analogy between diagnostic tests
and clinical research. JAMA 1987,257:2459-63.

38. Berger J. The frequentist viewpoint and condition-
ing. In: LeCam L, Olshen R, eds. Proceedings of
the Berkeley Conference in Honor of Jerry Ney-
man and Jack Kiefcr. Vol 1. Belmont, CA: Wads-
worth, 1985:15-43.

39. Greenland S. On the logical justification of condi-
tional tests for two-by-two contingency tables. Am
Stat 1991 ;45:248-51.

40. Good I. Probability and the weighing of evidence.
New York: Charles Griffin & Co., 1950.

41. Berkson J. Tests of significance considered as evi-
dence. J Am Stat Assoc 1942;37:325-35.

42. Birnbaum A. On the foundations of statistical in-
ference (with discussion). J Am Stat Assoc 1962;
57:269-326.

43. Sackett D, Haynes R, Tugwell P. Clinical epide-
miology: a basic science for clinical medicine. Bos-
ton: Little, Brown, 1985.

44. McCullagh P, Nelder J. Generalized linear models.
1st ed. New York: Chapman and Hall, 1983.

45. Barnard G. The use of the likelihood function in
statistical practice. In: Proceedings of the V Berke-
ley Symposium. Vol 1. Berkeley: University of
California Press, 1966:27-40.

46. Edwards W, Lindman H, Savage L. Bayesian sta-
tistical inference for psychological research. Psychol
Rev 1963;70:193-242.

47. Dupont W. Sequential stopping rules and sequen-
tially adjusted p values: Does one require the other?
(with discussion). Controlled Clin Trials 1983;4:
3-10.

48. Lindley D. A statistical paradox. Biometrika 1957;
44:187-212.

49. Cornfield J. A Bayesian test of some classical hy-
potheses—with applications to sequential clinical
trials. J Am Stat Assoc 1966;61:577-94.

50. Cornfield J. Sequential trials, sequential analysis,
and the likelihood principle. Am Statistician 1966;
20:18-23.

51. Thomas DC, Siemiatycki J, Dewar R, et al. The
problem of multiple inference in studies designed
to generate hypotheses. Am J Epidemiol 1985;
122:1080-95.

52. Royall R. The effect of sample size on the meaning
of significance tests. Am Statistician 1986;40:
313-15.

53. Goodman S. A comment on replication, p values,
and evidence. Stat Med 1992;11:875-9.

54. Goodman S. One or two-sided p values? Controlled
Clin Trials 1988;9:387-8.

55. Goodman S. Meta-analysis and evidence. Con-
trolled Clin Trials 1989;lO:188-2O4,435.

56. Bennett JH. Statistical inference: selected corre-
spondence of RA Fisher. New York: Wiley, 1991.

(Appendix follows)

 at U
niversity of C

alifornia, Los A
ngeles on O

ctober 7, 2011
aje.oxfordjournals.org

D
ow

nloaded from
 

http://aje.oxfordjournals.org/


496 Goodman

APPENDIX

The likelihood ratios that appeared in table 1 are calculated as follows:

Testing Ho: n = 0 vs. HA: n = Ao.05,0.90

where Ao.05.090 is the difference against which the hypothesis test has two sided a = 0.05 and
one-sided /3 = 0.10 (power = 0.90). The Z score corresponding to this alternative hypothesis,
ZA, equals 1.96 + 1.28 = 3.24. Because we are comparing a precise p value to a corresponding
hypothesis test, the observed Z score will be designated by Za.

The likelihood ratio (LR) for the imprecise p value, corresponding to the ratio of shaded
areas in figure 1, is

LR(//0 vs. HA\p< a) =
1 - *(ZO - 3.24)

where $(Z) is the area under the gaussian curve to the left of Z.
The likelihood ratio for the precise p value, corresponding to A/B in figure 1, is

kp~z2j2

LR(H0 vs. HA\p = a)
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