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5 The Likelihood Paradigm
for Statistical Evidence .
Richard Royall

ABSTRACT

Statistical methods aim to answer a variety of questions about observations.
A simple example occurs when a fairly reliable test for a condition or sub-
stance, C, has given a positive result. Three important types of questions
are: (1) Should this observation lead me to believe that C is present? (2) Does
this observation justify my acting as if C were present? (3) Is this observa-
tion evidence that C is present? We distinguish among these three questions
in terms of the variables and principles that determine their answers. Then
we use this framework to understand the scope and limitations of current
methods for interpreting statistical data as evidence. Questions of the third
type, concerning the evidential interpretation of statistical data, are central
to many applications of statistics in science. We see that for answering them
current statistical methods are seriously flawed. We find the source of the
problems, and propose a solution based on the law of likelihood. This law
suggests how the dominant statistical paradigm can be altered so as to
generate appropriate methods for (i) objective representation and measure
ment of the evidence embodied in a specific set of observations, as well as
(ii) measurement and control of the probabilities that a study will produce
weak or misleading evidence.

INTRODUCTION

An important role of statistical analysis in science is interpreting observed
dlata as evidence—showing “what the data say.” Although the standard sta-
tistical methods (hypothesis testing, estimation, confidence intervals) are
routinely used for this purpose, the theory behind those methods contains
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no defined concept of evidence and no answer to the basic question “When
is it correct to say that a given body of data represents evidence support-
ing one statistical hypothesis over another?” or to its sequel, “Can we give
an objective measure of the strength of statistical evidence?” Because of this
theoretical inadequacy, the use of statistical methods in science is guided
largely by convention and intuition and is marked by unresolvable contro-
versies (such as those over the proper use and interpretation of P-values and
adjustments for multiple testing).

We argue that the law of likelihood represents the missing concept and
that its adoption in statistical theory can lead to a frequentist methodology
that avoids the logical inconsistencies pervading current methods while
maintaining the essential properties that have made those methods into im-

portant scientific tools.

STATISTICAL EVIDENCE

By “statistical evidence,” we mean observations that are interpreted under a
probability model. The model consists of a collection of probability distri-
butions, and the observations are conceptualized as having been generated
from one of the distributions.

For example, a subject is given a diagnostic test for a disease and the re-
sult is positive. This observation might be interpreted as a realization of a
random variable X whose possible values are 1 (positive) and 0 (negative).
The distribution of X is determined by whether the subject does or does not
have the disease, as shown in the following table of probabilities.

Test Result

Xx=1 X=0
disease present 94 .06
disease absent 02 .98

This simple model has only two probability distributions (given in the two
rows of the table). In this context, the observed test result is an example of
statistical evidence.

Three Questions
Statistics is the discipline concerned with statistical evidence—producing,
modeling, interpreting, communicating, and using it. We will focus on an
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area of statistics that is central to its role in science, interpreting and com-
municating statistical evidence per se. To distinguish this problem area from
some other branches of statistics, and to introduce its essential principle, we
consider the above diagnostic test, and three conclusions about disease sta-
tus that might be appropriate after a positive result has been observed:

This person probably has the disease.
This person should be treated for the disease.
This test result is evidence that this person has the disease.

How can we determine which, if any, of these conclusions are correct?

The first is a statement about the present state of uncertainty concerning
the subject’s disease status, i.e., the conditional probability of disease, given
the positive test result. It states that this probability is greater than .5. The
above model does not determine whether this conclusion is true. This is be-
cause the conditional probability of disease (given the positive test result)
depends not only on the probabilities that comprise the model, but also on
a quantity that is not represented in this model. That missing quantity is the
probability of disease before the test (the prior probability). Precisely how
the present uncertainty depends on the prior is detailed in elementary prob-
ability theory by Bayes’ theorem. For example, if the test was used in a mass
screening program for a rare disease, and if the subject is simply one of
those whose results were positive, then the prior probability is the preva-
lence of the disease in the screened population. And if that probability is less
than .021, then Bayes’ theorem shows that the present probability of disease
is still less than .5, so that, although the test is positive, the first conclusion
is wrong—this person probably does not have the disease. But if, instead of
an anonymous participant in the screening program, she is a patient whose
symptoms implied a disease probability of .10 before the test, then the prob-
ability of disease is now .84, and the first conclusion is quite correct.

The correctness of the second statement (“This person should be treated
for the disease”) depends on the present probability of disease, so that it too
depends on the prior probability. But it depends on other factors as well,
such as the costs of treating and of not treating, both when the disease is
present and when it is not. Even when the first conclusion is wrong, the sec-
ond might be correct. This would be true if the treatment is a highly effec-
1Iive one, with little cost or risk, while not treating a patient with the disease
is disastrous. But under different conditions of prior uncertainty and costs,
the opposite conclusions might be appropriate—it might be best that the
subject not be treated, even though she probably has the disease.
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The third conclusion, unlike the first two, requires for its appraisal noth-
ing more than the probability model represented by the table. Under that
model, the third conclusion is correct, regardless of the disease probability
before the test and regardless of the costs associated with whatever treat-
ment decisions might be made—the positive test result is evidence that this
person has the disease. This strongly intuitive conclusion is certified by the
basic rule for interpreting statistical evidence, which will be stated in the

next section.
Each of the three conclusions represents an answer to a different

question:

What should I believe?
What should I do?
How should I interpret this body of observations as evidence?

These three questions define three distinct problem areas of statistics.

It is the third problem area, proper interpretation of statistical data as ev-
idence, that we are concerned with in this paper. It is a critical question in
scientific research, and, as the simple diagnostic test example shows, it is
the only one of the three questions that can be answered independently of

prior beliefs.

The Law of Likelihood
We have seen that, after the positive test result has been observed, the con-
clusion that the subject probably does not have the disease is appropriate
when the prior probability is small enough. Similarly, the conclusion that
the best course of action is not to treat for the disease is appropriate under
certain conditions on the prior probability and the potential costs. But to in-
terpret the positive test result as evidence that the subject does not have the
disease is never appropriate—it is simply and unequivocally wrong. Why is
it wrong?

The interpretation is wrong because it violates the fundamental principle
of statistical reasoning. That principle, the basic rule for interpreting statis-
tical evidence, is what Hacking (1965, 70) named the law of likelihood. It

states:

If hypothesis A implies that the probability that a random variable X takes the
value x is p4(x), while hypothesis B implies that the probability is ps(x), then the
observation X = x is evidence supporting A over B if and only if ps(x) = palx),

and the likelihood ratio, p,(x)/ps(x), measures the strength of that evidence.
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This says simply that if an event is more probable under hypothesis A than
hypothesis B, then the occurrence of that event is evidence supporting A
over B—the hypothesis that did the better job of predicting the event is bet-
ter supported by its occurrence. It further states that the degree to which oc-
currence of the event supports A over B (the strength of the evidence) is
quantified by the ratio of the two probabilities.

When uncertainty about the hypotheses, before X = x is observed, is
measured by prior probabilities, P(A) and P(B), the law of likelihood can be
derived from elementary probability theory. In that case, the quantity p,(x)
is the conditional probability that X = x, given that A is true, P(X = x|A), and
ps(x)is P(X = x| B). The definition of conditional probability implies that

P(AIX
P(BIX

x) _ pA)P(A)
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This formula shows that the effect of the statistical evidence (the ob
servation X = x) is to change the probability ratio from P(A)/P(B) to
P(A|X = x)/P(B| X = x). The likelihood ratio, p,(x)/ps(x), is the exact factor
by which the probability ratio is changed. If the likelihood ratio equals 5
then the observation X = x constitutes evidence just slr:_mg enough to cause

a fivefold increase in the probability ratio. Note that the strength of the evi-

’

dence is independent of the prior probabilities. (The same argument and
conclusion apply when p,(x) and pg(x) are not probabilities but probability
densities at x.)

The likelihood ratio is a precise and objective numerical measure of the
strength of statistical evidence. Practical use of this measure requires that
: " “fairly
strong,” “very strong,” etc. The values 8 and 32 have been suggested as
benchmarks for likelihood ratios—observations with a likelihood ratio of 8
(or 1/8) constitute moderately strong evidence, and observations with a like
lihood ratio of 32 (or 1/32) are strong evidence. These benchmark values

we learn to relate it to intuitive verbal descriptions such as “weak,

come from considering the various possible results of one of the simplest of
experiments (Royall, 1997) and are similar to others that have been sug
gested (Jeffreys, 1961; Edwards, 1972; Kass and Raftery, 1995).

Misleading Evidence

1:he Positiw.‘ result on our diagnostic test, with a likelihood ratio (LR) of
.J4g,qz = 47, constitutes strong evidence that the subject has the disease.
This interpretation of the test result is correct, regardless of that subject’s ac-
tual disease status. If she does not have the disease, then the evidence is mis-
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leading. We have not made an error—we have interpreted the evidence cor-
rectly. It is the evidence itself that is misleading.

Statistical evidence, properly interpreted, can be misleading. But we can-
not observe strong misleading evidence very often. In our example, if the
disease is not present table 1 shows that the probability of a (misleading)
positive test is only .02. It is easy to prove that in other situations the prob-
ability of observing misleading evidence this strong or stronger (LR = 47)
can be slightly greater, but it can never exceed 1/47 = .0213. We can state a
universal bound on the probability of misleading evidence: If hypothesis A
implies that the probability that a random variable X has one probability
density (or mass) function, f;(*), while hypothesis B implies another, f(*),
then if A is true the probability of observing evidence supporting B over A
by a factor of k or more cannot exceed 1/k. That is, P,(fo(X)/fa(X) = k) = 1/k
(Royall, 1997).

This bound has been noted by various authors (e.g., Smith, 1953; Birn-
baum, 1962). Much tighter bounds apply in important special cases. For ex-
ample, when the two distributions are normal with different means and a
common variance, the universal bound 1/k can be replaced by the much
smaller value, ®(— V2 In(k)), where @ is the standard normal distribution
function. In that case the probabilities of misleading evidence, for the pro-
posed benchmarks k = 8 and k = 32 (representing “pretty strong” and
“strong” evidence respectively), cannot exceed .021 and .004 (Royall, 1997).

The universal bound 1/k applies even if we deliberately seek evidence
supporting B over A by continuing to make observations on X until our
sample gives a likelihood ratio of at least k in favor of B. When A is true, the
probability is at most 1/k that we will succeed, sooner or later finding that
the accumulated observations represent strong evidence in favor of B. That
is, the probability is at least 1 — 1/k that we will never succeed, sampling for-
ever without once finding that our data represent strong evidence in favor of
B (Robbins, 1970).

The Likelihood Function

As a second example of statistical evidence, consider observing a sequence
of tosses of a 40¢ coin. The coin is asymmetric, consisting of an ordinary
quarter, nickel, and dime that have been glued together so that the heads of
the dime is on one side and the tails of the quarter is on the other. If we
model the tosses as independent trials with a common probability of heads,
0, then every value of 6 between 0 and 1 determines a different probability
distribution. Under this model a sequence of observations, suchas1,1,0,1,
1,0, ... (heads = 1, tails = 0) represents statistical evidence. The probabil-
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FiGURE 5.1 Likelihood for probability of heads with 9 heads observed in 17 tosses.

itynthat a sequence of n tosses will produce observations x, x,, . . ., x,, is
I 2 6‘";’(1 —0)'% = 61 — 0)" * where k = 2| x;, the number of heads.
For a given set of observations this probability is a function of the variable
6 and is called the likelihood function:

‘

@) =0(1—-0)"* o0=6=1

The law of likelihood gives this function its meaning: L(f) determines the
relative support for every pair of values of 6, the probability of heads. Ob-
servation of a sequence of n tosses that contains k heads represents evidence
supporting the hypothesis that 8 = 6, over the hypothesis that 8 = @, by the
factor L(8,)/L(8,).

Two likelihood functions that differ only by a constant multiple are
equive‘llent, because they give identical likelihood ratios for all pairs of val-
ues of the parameter. That is, the likelihood function is defined only up to
an arbitrary constant multiplier.

: To produce some evidence about the probability of heads for my 40¢
piece, I performed a simple experiment. I tossed the coin 17 times and
U‘Oted the results. Heads appeared 9 times. To see what these observa-
tlgons say 8about the probability of heads, we look at the likelihood function,
?ht‘l — 9} , whicb is shown in figure 5.1. It is a graphical representation of

Is atfitlstlcal evidence. We have scaled this function so that its maximum
Valye is 1. We have noted the value of 6 that is best supported by the obser-
Vations (9/17 = .53), as well as the 1/8 and 1/32 likelihood intervals (LIs).
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These intervals, where the scaled likelihood is at least 1/8 (1/32), represent
the values of # that are consistent with the observations at the levels of the
two benchmarks, 8 and 32—if a value is in the 1/8 interval, (0.29, 0.76), then
there is no alternative that is better supported by a factor of 8 or more (fairly

strong evidence).

The Likelihood Principle

Suppose two instances of statistical evidence generate the same likelihood
function. According to the law of likelihood, this means that for every pair
of parameter values, 6, and 6, the strength of the evidence in support of 6,
vis-a-vis 6,, L(6,)/L(8,), is the same in both instances. Both will have the
same impact on any prior probability distribution for 6. In this powerful
sense, they are equivalent. On the other hand, if two instances of statistical
evidence are equivalent, then all of the likelihood ratios, L(6,)/L(6,), must be
equal, which means that the two likelihood functions are the same. There-
fore, the law of likelihood implies that two instances of statistical evidence
are equivalent if and only if they generate the same likelihood function. This
proposition is called the likelihood principle (Birnbaum, 1962; Edwards,
Lindman, and Savage, 1963). It means that the likelihood function is a math-
ematical representation of the statistical evidence per se.

Our experiment with the 40¢ piece produced some observations. The
likelihood function shows what those observations mean, as evidence about
the probability of heads, in the context of the model that we are using. It also
shows that, within this context, certain aspects of the observations have no
effect on their evidential meaning and are, in that sense, irrelevant. For ex-
ample, I actually observed a particular sequence of heads and tails: 1, 1, 0,
1,1,0,0,0,1,0,1,1,1,0,0,0, 1. Other observations, consisting of 9 heads
and 8 tails in some different order, would give the same likelihood function,
9°(1 — 0)°. Those observations would constitute evidence of exactly the
same strength as ours in support of any value, 6,, versus any other, 6,, and
would therefore represent evidence that is equivalent to ours. The meaning
of the observations, as evidence about the probability of heads, depends
only on the number of heads and the number of tails. The order of the ob-
servations does not affect any of the likelihood ratios (i.e., it does not affect
the likelihood function)—the order is irrelevant.

Besides showing that certain characteristics of the observations are irrel-
evant to their proper interpretation as evidence, the likelihood principle re-
veals that certain aspects of the experimental procedure that produced those
observations are also irrelevant. My observation of 9 heads in 17 trials might
have been generated by fixing the number of trials at 17, observing the (ran-
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dom) number of heads, say H, and finding H = 9. But it might have been
produced in another way; instead of stopping after a fixed number of trials,
I could have generated these observations by fixing the number of heads to
be observed at 9, observing the (random) number of trials, say N, required to
produce 9 heads, and finding N = 17. The probability of observing 9 heads
17

" )89(1 — 0)% in the first experiment,

in seventeen trials is P(H = 9) = (

o N 16 9 8.
and P(N = 17) = g 6°(1 — 6)° in the second. Although these probabil-

ities differ, the likelihood functions are the same (proportional to 8°(1 — 6)®).
Thus, it does not matter which procedure I actually used (stopping after
17 trials, or after 9 heads). What these observations mean, as evidence about
the probability of heads, is shown in figure 5.1: it is the same in both cases.
The stopping rule does not affect the likelihood function—for interpreting
the observed data as evidence, the stopping rule is irrelevant.

This conclusion, irrelevance of the stopping rule, implies that conven-
tional frequentist statistical methods are not appropriate for interpreting the
observed data as evidence. This is because those methods, when applied to
our observations (9 heads in 17 trials) give different rcsults‘undnr the two
stopping rules. For example, the observed proportion of successes, 9/17, is
an unbiased estimator of # under the first stopping rule, but not under the
second. Furthermore, this estimator has different standard errors under
the two stopping rules. Confidence coetficients and P-values also ditfer,
depending on which stopping rule was used. P-values do not measure the
strength of the evidence, because the evidence is the same in both cases, but
the P-values (for testing the hypothesis that 6 is .8 vs. some smaller value, for
example) are different. Confidence intervals do not show “what the data say”
about 6, because the data say the same thing in both cases, while the confi-
dence intervals are different.

We will consider this example and the radical conclusion that it illus-
trates in more detail in the next section. The irrelevance of the stopping rule,

in the evidential interpretation of observed data, will be illustrated again
below.

STATISTICS IN SCIENCE: THE MISSING LINK

b‘latistics today is in a conceptual and theoretical mess. The discipline is di
vided into two rival camps, the frequentists and the Bayesians, and neither
Camp offers the tools that science needs for objectively representing and in-
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terpreting statistical data as evidence. In this section, we will identify the
theoretical deficiency that has produced this methodological one, and see
how to correct both.

Bayesian statistics is primarily concerned with the question of how one’s
beliefs should change in response to new statistical evidence; that is, its fo-
cus is on the first of the three questions listed above (“What should I be-
lieve?”). As a leading Bayesian put it, “The main subject matter of statistics
is the study of how data sets change degrees of belief; from prior, by obser-
vation of A, to posterior. They change by Bayes’ theorem” (Lindley, 1965,
30). The result of a Bayesian statistical analysis is a (posterior) probability
distribution for the parameter. Now, the posterior distribution is determined
by the prior and the likelihood function together (as explained by Bayes’ the-
orem). Therefore, as shown in the diagnostic test example above, a Bayesian
analysis requires, in addition to the probability model for the observed data
(which determines the likelihood function), a (prior) probability distribu-
tion for the parameter. A frequentist model for my observations on the 40¢
coin represents the tosses as independent trials with some unknown prob-
ability, 8, of heads. A Bayesian model must supplement this with a prior
probability distribution for 6. The two camps use the same model for the
probability distribution of the observable random variables (the results of
the tosses); but the Bayesian requires, in addition, a prior probability dis-
tribution for the parameter. This prior distribution represents the experi-
menter’s state of uncertainty about the parameter before the observations
are made (Edwards, Lindman, and Savage, 1963).

The observations affect the posterior probability distribution only
through the likelihood function: for a given prior distribution, if different
observations (perhaps from different experiments) produce the same likeli-
hood function, then they produce the same posterior probability distribu-
tion. Thus, the Bayesian approach leads inevitably to the likelihood prin-
ciple. But while they have embraced the principle, Bayesians have shown
little interest in likelihoods per se, i.e., likelihoods without prior probabili-
ties. Savage himself wrote (1962, 307), “I, myself, came to take personalis-
tic statistics, or Bayesian statistics as it is sometimes called, seriously only
through recognition of the likelihood principle. I suspect that once the like-
lihood principle is widely recognized, people will not long stop at that
halfway house.” More recently, Berger and Wolpert (1988, 124) argued that
“sensible use of the likelihood function seems possible only through Bayes-
ian analysis,” and Lindley (1992, 415) went so far as to proclaim that “the
only satisfactory measures of support are probability-based. Likelihood will
not do.”
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Bayesian efforts to show what the data say have concentrated on (i) search-
ing for prior probability distributions to represent total ignorance (the state
of knowledge of an ideal ignoramus) or, failing that, (ii) arguing that certain
distributions should be adopted as standard “reference priors” (Bernardo,
1979; Berger and Bernardo, 1992). Posterior probability distributions corre-
sponding to such priors would then supposedly show what the data say.
That is, Bayesians have tried to use posterior probability distributions, ap-
propriate to question 1 (“What should I believe?”) to answer question 3
(“How should I interpret this body of observations as evidence?”). Non-
Bayesians generally judge these attempts to have failed (e.g., Edwards, 1969;
1992, sec. 4.5). The reason for this failure is found in the law of likelihood—
they have failed because probabilities represent and measure degrees of be-
lief or uncertainty, not evidence. The law of likelihood reveals that evidence
has a different mathematical form than uncertainty. It is likelihood ratios,
not probabilities, that represent and measure statistical evidence (Royall,
1997, secs. 1.13, 8.6). It is the likelihood function, and not any probability
distribution, that shows what the data say.

Science, looking to statistics for objective ways to represent and quantify
evidence, has not embraced Bayesian methods. One obvious reason is the
need for prior probabilities in Bayesian analyses. Since these probabilities
are usually personal, or subjective (the quest for objective “ignorance” pri-
ors or widely acceptable “reference” priors having failed), they are widely
seen as incompatible with the scientific need for objectivity. As Efron (1986,
4) put it, “The high ground of scientific objectivity has been seized by the
frequentists.”

But all is not well with statistics in science. As we saw in the previous sec-
tion, there is something fundamentally wrong with today’s standard fre-
quentist methodology for evidential interpretation of scientific data. Allan
Birnbaum (1970), while advocating the use of this methodology, acknowl-
edged that it consists of “an incompletely formalized synthesis of ingredi-
ents borrowed from mutually incompatible theoretical sources.”

The theoretical problems have created practical ones, as evidenced by the
endless controversy over the proper use and interpretation of statistical hy-
pothesis testing in science (Morrison and Henkel, 1970; Cohen, 1994; Bower,
1997; Thompson, 1998; Goodman, 1998: Sterne and Smith, 2001). This
controversy flows from the discord between theory and practice—frequen-
list statistical theory is based on Neyman’s (1950) behavioristic view that a
hypothesis test is a procedure for choosing between the two hypotheses
(with evidential interpretation explicitly disallowed), while science’s main
use of hypothesis tests is for showing the direction and strength of statisti-
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cal evidence. The theory is aimed at our question 2 (“What should 1 do?”)

but i
the methods are used to answer question 3. (For further discussion and

details see Royall, 1997, chaps. 2, 3)

) The frequentists’ claim to occupy the high ground of objectivity has even;
een challenged. In fact, as Edwards, Lindman, and Savage (1984 59) .-
pointed out, dependence on stopping rules makes conventional freque,ntist 1

statistical procedures (which they referred to as “classical procedures”) sub-

jective: “ i 5 i i
j e: “The irrelevance of stopping rules is one respect in which Bayesian

i M i
procedures are more objective than classical ones. Classical procedures

E : . g
sist that the intentions of the experimenter are crucial to the interpreta-

tl{:n of data.” These authors illustrated their point with an example like our
observation of 9 heads in 17 tosses of a 40¢ pj 5

. ¢ piece. Suppose you and 1 were
collaborators on that experiment, but we disagreed about which stopping

rule should be used. I wanted to fix the number of tosses (at 17), but you -

wanted tc.) fix the number of heads (at 9). Instead of postponing the experi-
ment until we could agree on a stopping rule, we decided to begin sampli
a‘nd to continue so long as both stopping rules said that we should (i -l
til .we had either 9 heads or 17 observations, whichever came first) ;t; E“'
point we would decide which rule to apply. Because the ninth h dt ;
curred on the seventeenth toss (so both rules told us to sto ), the dea' o
was never made. But our data cannot be analyzed using coi;entior?cllsflon
quentist methods until it is made, i.e., until someone determines whoje u:;
;;vo:;ki have prevailed If different results had been observed—if the ninth
ead had occurred earlier, would you have persuaded me to sto the stud
or would I have persuaded you to continue? If, after 17 tosses f»ve h Sdu ¢
yet ot?served 9 heads, would I have persuaded you to stop? A];hou ]‘?bmilt
stopping rules assign exactly the same probability, §°(1 = 6)°, t gth g
tual observations, (Lels 05T 0,0,01,01,1, 15 (,), 0.0:1}); cr;n\(;ntiirfacl_

h 5e w i“ ’U\'(}Uld ha\c'e T \-'a‘ y
wiho b p (<] , Yours or m]nf‘., lf d]ﬂ(—.‘l ent ObSl’:‘I\«aIIOIIb

Why does scienc i
€ continue to us i . y
well-known logical defe  frequentist methods, despite their

able alternative, Bayesian stati
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Justrated most clearly in the formulas that are routinely used to determine
sample size when a scientific study is planned. The study is conceptualized
as a procedure for choosing between two hypotheses, with potential errors
of two types. Probabilities of the two types of error are set at specified tar-
get levels. These are plugged into a formula that gives the required sample
size. The researcher cannot eliminate the possibility of errors. But by using
frequentist statistical methods, he can calculate and control their probability.

Can statistics avoid the logical inconsistencies that pervade current fre-
quentist methods for interpreting data as evidence, while still providing
what science requires—objective measure and control of the risk of unsat-
isfactory results? Yes. The key to accomplishing these two goals is to recog-
nize that probabilities, which properly measure the uncertainties associated
with a given procedure for generating statistical evidence, are not appropri-
ate for measuring the strength of evidence produced. As Fisher (1959, 93)
put it, “As a matter of principle, the infrequency with which, in particular
circumstances, decisive evidence is obtained, should not be confused with
the force, or cogency, of such evidence.”

We must distinguish between the strength of evidence and the probabil-
ity that a procedure will produce evidence of a given strength. The problem
with current frequentist theory is that, lacking an explicit concept of evi-
dence, it attempts to use the same quantities (probabilities) to measure both
the chance of errors and the strength of observed evidence.! The solution,
presented in the next section, is found in the law of likelihood, which em-
bodies the explicit, objective, quantitative concept of evidence that is miss-
ing from current frequentist theory, and which explains that it is likelihood
ratios, not probabilities, that measure evidence. Probabilities measure un-

certainty; likelihood ratios measure evidence.

TWO APPROACHES TO PLANNING A SIMPLE EXPERIMENT

In this section, we consider the problem of deciding how many observations
will be made in a scientific study or experiment. The Neyman-Pearson for-
mulation and solution to this problem represents the paradigm that guides
modern frequentist statistical theory (Royall, 1997, chap. 2). We first de-
scribe that paradigm in its simplest, clearest form. Then we see how it is
changed when the problem is reformulated in terms of statistical evidence.

1. For further discussion, see Royall (1997, chap. 5).
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Neyman-Pearson Paradigm

Purpose: The experiment is a procedure for choosing between two hy-
potheses. We will make some observations, and they will determine which
hypothesis is chosen.

Probability model: Independent random variables X;, X,, . . ., X, identi-
cally distributed as X, will be observed. The model consists of two probabil-
ity distributions for X, corresponding to simple hypotheses H, and H,.

Objective of statistical analysis: We wish to use the observations to
choose between H, and H,.

Desiderata: Noting that we can make errors of two types, choosing H,
when H, is true, and vice-versa, we want:

(a) To measure and control the error probabilities. (We want to be pretty
sure (probability = 1 — a) that we won't choose H, when H, is true and
pretty sure (probability = 1 — ) that we won't choose H, when H, is true.)

(b) To minimize sample size subject to (a).

The immediate goal of many scientific studies is not to choose among hy-
potheses, but to generate empirical evidence about them. This evidence will
be communicated in reports and journal articles. Then various parties will
use it, in combination with other information, as well as judgments about
the consequences of alternative actions, in making a variety of choices and
decisions, many that were not even imagined by the authors of the study. An
epidemiological study, for example, might produce strong statistical evi-
dence that cigarette smokers have a much greater risk of dying from a cer-
tain type of cancer than nonsmokers. The published evidence will be used by
many parties—Ilegislators, lawyers, tobacco farmers, smokers, nonsmokers,
researchers in other fields (oncology, genetics, etc.), insurance companies—
in making innumerable choices and decisions. From this perspective, a
more realistic formulation of the problem of planning a scientific study uses
the evidence-generating paradigm.

Evidence-Generating Paradigm

Purpose: The experiment is a procedure for generating empirical evi-
dence about the two hypotheses. We will make some observations and in-
terpret them as evidence.

Probability model: Independent random variables X;, X,, . . ., X,, identi-
cally distributed as X, will be observed. The model consists of two probabil-
ity distributions for X, corresponding to simple hypotheses H, and H,.

Objective of statistical analysis: We wish to interpret the observations as
evidence regarding H, vis-a-vis H,.

The Likelihood Paradigm for Statistical Evidence 133

Desiderata: We will make no errors—we will interpret the evidence
correctly. But the evidence itself can be unsatisfactory in two ways: It can
be weak (evidence that does not strongly support either hypothesis), or it
can be misleading (strong evidence for H; when H, is true or vice-versa).
We want:

(a) To measure and control the probabilities of observing weak or mis-
leading evidence. (If either hypothesis is true we want to be pretty sure
(probability = 1 — W) that we won't find weak evidence, and pretty sure
(probability = 1 — M) that we won't find strong evidence in favor of the
other one, or misleading evidence.)

(b) To minimize sample size subject to (a).

To compare this evidence-generating paradigm to the preceding Ney-
man-Pearson decision-making paradigm, we consider the familiar example
of observing normally distributed random variables with known standard
deviation. Hypothesis H, specifies one value for the mean, and H, specifies
another value, larger by a fixed multiple, A, of the standard deviation (i.e.,
My = py + Ao).

First, we apply the Neyman-Pearson approach. For a given probability
of the first type of error, a, the probability of the second type, B, is de-
termined by the sample size n: B(n) = ®(z,_, — n'?A) where z,_, is the
100(1 — a)th percentile of the standard normal distribution. The standard
formula (e.g., Pagano and Gauvreau, 1993, 225) shows that the minimum
sample size that will control the error rates at the target values (a, B) is n =
(z2)q + z]_B)E/AZ. For example, if we take @ = B = .05, then for A = 1,n =
(1.645 + 1.645)* = 10.8; 11 observations are sufficient.

If we take the evidential approach, with the suggested benchmark value
k = 8, representing pretty strong evidence, then the probability of strong
misleading evidence (likelihood ratio greater than 8 in favor of the false hy-
pothesis) is the same under both hypotheses. For a sample of n observations,
this probability is: M(n) = ®(—VnA/2 — In(8)/(VnA)).

The probability of weak evidence (likelihood ratio between 1/8 and 8) is
also the same under both hypotheses:

W(n) = ®(VnA/2 + In(8)/(VnA)) — ®(VnA/2 — In(8)/(VnA)).

These two functions, M(n) and W(n), are shown in figure 5.2 for A = 1.
Dashed lines indicate the Neyman-Pearson error probabilities, & = .05 (con-
stant) and f3,, for comparison. Note that 8, = .05 when n = 10.8, as found
in the previous paragraph.
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FIGURE 5.2 Probabilities of weak and misleading evidence with normal means {Differences =

one standard deviation).

Several things are clear from figure 5.2.

(a) Both probabilities, M and W, can be held below any desired positive
er how small, by making enough observations.

M, is very small for small n,

(at n =2 In(8)/A%), and de-

bound, no matt
(b) The probability of misleading evidence,
increasing with n until reaching a maximum

creasing thereafter.
(c) The maximum probability of misleading evidence, over all values of

n, is small. (It is actually d(— V21n(8)), or .021,) It is attained when
the sample size is so small that the probability of weak evidence is large
(W(n) = ®(V2In(8)) = .979).

(d) Because of (c), the sample size calcu
on the probability of weak evidence. We need large s
a good chance of getting strong evidence. The nature of statistical evidence
is such that the chances of gettin
sizes. This remains true in general: for any k > 1, the maximum probability
of misleading evidence (over all n) is (IJ(-—\/_ZI_H(Q) Even for the unrea-
sonably small benchmark value of k = 4, this probability cannot exceed .05.

(e) There are essential differences between the “analogous” quantities &
and M. We can fix a, the probability that when H, is true we will choose Hj,
at any level we like. But as noted in (d) there are natural limits on M, the

probability that when Hj is true we will find strong evidence in favor of H;.
(f) The standard calculation gives a sample size that is too small to ensure

lation is driven by the constraint
amples in order to have

g misleading evidence are small at all sample
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't};at lh; experiment will, with high probability, produce strong evidence
d;o}ut these two hypotheses. At n = 11, where B, the probability of an e-rmr
0 .t 1e secgnd type, falls just below .05, the probability of finding onl k
evidence is about three times as great: W(l11) = .14 ’ e

PLANNING A STUDY VS. INTERPRETING OBSERVATIONS AS EVIDENCE

1.}16 probabilities of weak and misleading evidence are important in plan
rl;:ﬁ,“a s;ud}_;l/, b]tn they(/ play no role in the proper interpretation of the study’s
results. In Hacking’s (1965) words, probabilities are for “ ;
S : s are before trial betting,”
while likelihoods are for “aft i i P i
er trial evaluation.” An exam
e | : : ple can make the
il:,t‘:;rinon T}?re tangible: Suppose we are going to observe normal random
ariables with unit standard deviation, and w i :
i : . : e are interested in the me
g_ W? are particularly interested in the two hypotheses H,: @ = 0 a:;lei;l!
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. that if we want t 5
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Finally, j 5
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FIGURE 5.3 Likelihood for normal mean, n = 18 observations.
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FIGURE 5.4 Likelihood for normal mean, n = 36 observations.

to n = 100. The evidence supporting 6 = 0 over § = 1 is now overwhelm-
ing, but figure 5.5 shows that we have strong evidence supporting values
near 1/4 over 6 = 0.

What these 100 observations say about the value of 6 is shown in fig-
ure 5.5. The probabilities in figure 5.2, which I used in choosing the initial
sample size, are not relevant to the interpretation of this evidence. (For more
on this point see Royall, 1997, sec. 4.5; 2000, rejoinder.) Nor is the fact that
[ considered only the two values § = 0 and 6 = 1 at the planning stage. The
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FIGURE 5.5 Likelihood for normal mean, n = 100 observations.

same is true of the stopping rule—whatever these observations mean, as ev-
idence about their expected value 6, it is independent of the stopping rule.
This evidence is not weakened (or otherwise affected) by the fact that I
“peeked” at the data along the way, or that my original target likelihood
ratio was only 8. Such facts are critical for determining confidence coeffi-
cients, P-values, Neyman-Pearson error probabilities (a, B), etc.,, but they
have no effect on the likelihood function and no valid role to play in inter-
preting these 100 observations as evidence about 6.2

CONCLUSION

In a critique of Neyman-Pearson theory John Pratt (1961) rightly observed,
“of course, skillful people can do useful statistics using Neyman and Pear-
son’s formulation. But so can they using Fisher’s or Jeffreys’, or minimax de-
cision theory, or subjective probability and Bayes’ Theorem.” Nevertheless,
when the purpose of a statistical analysis is to represent and interpret data
as evidence, all of these methods have serious shortcomings. These can be
overcome within the frequentist approach by making explicit what has here-
tofore been treated only implicitly and intuitively—the concept of statistical

2. These observations are actually 100 random normal deviates with mean 8 = 0.3, and
standard deviation 1.
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L. requires probability models for the observable random variables |
(and is in that sense frequentist, not Bayesian) o

2. contains a valid, explicit, ob
evidence;

7

Jective measure of the strength of statistical

3 Prc?wdes for e.xplicit, objective measure (and control) of the probabili-
ties of observing weak or misleading evidence.

Under the likelihood

probabilities of observing weak or misleading evidence, but these probabil-
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5.1 Commentary

D. R. Cox

Fi i 3
rslt(,‘ it ;houlclllbe stressed that the law of likelihood is a very appealing
working hypothesis, but in its stron iti
: ; § sense it is no more than that, F
eral points of view two sets i s
of data having equivalent likel;
st S 0 § equivalent likelihood functions
5 rl:);idbffregardid ahs }Lrowdmg the same evidence so long as the probabil
el from which they are derived is a :
. secure base for inter i
. : ; retation. It
s not at all so obvious that the same is true when the likelihoodspcome from
eed, it is a basic precept of the design of ex-

periments and of survey sampling that the way the data are obtained should

paradigm, changing the stopping rule changes the
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be taken account of in analysis and in that sense dependence on a stopping
rule, although a nuisance, is to be expected. Of course in many, but not all,
contexts the dependence is so slight that, however interesting its presence
or absence from a conceptual point of view, its practical relevance when
treated correctly is negligible.

It is entirely sensible to begin the discussion of fundamental issues by
looking at a very idealized situation, one with no nuisance parameters and
just two possible hypotheses. Yet to some extent an approach has to be
judged by the range of issues to which it will contribute. In some special
cases the presence of nuisance parameters can be evaded by suitable modi-
fications of the likelihood function, obtained, for example, by conditioning
or marginalizing, but to be valuable an approach needs to go far beyond
that. In some ways more serious is the matter of questions made precise
only in the light of the data. For example, a particular value of a parame-
ter may be compared with the maximum likelihood estimate. It is not at
all clear that a given numerical value of the likelihood ratio has the same
interpretation as in the simpler case. In both cases further calibration of
likelihood-based statistics seems needed, and it is of course at this point that
Richard Royall and I part company.

The discussion of the choice of sample size is illuminating, although for
many purposes a formulation in terms of estimation is more appealing.
That is, the objective is regarded as estimation of the parameter with a con-
centration of the likelihood function that depends in an approximately pre-
assigned way on the location of the likelihood. Then some difficulties dis-
appear. The final comment in the paper justifying continuous inspection of
the data when data accrue sequentially also has much appeal. Indeed, I be-
lieve that many statisticians approaching statistics from a broadly frequen-
tist perspective are uneasy at notions such as “spending error rates,” perhaps
because these treat notions of error rate as more than just hypothetical con-
cepts used for calibrating measures of uncertainty against performance in
idealized situations. While in some situations there may be compelling
quasi-political arguments, as well as cost considerations, pointing against
too frequent an analysis, in principle it is hard to see an argument at a com-
pletely fundamental level.

A full discussion of the evaluation of evidence needs to include proce-
dures for checking the adequacy of any proposed model. These can be
forced into a likelihood formulation only in a very restrictive sense.

Two further references that readers may find helpful are Barnard (1947)
and Birnbaum (1969). Barnard was the first, I believe, to give the interest-
ing inequality relating error rates to likelihood ratio. Birnbaum describes in
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vals were the most fruitful approach to the evaluation of evidence.

5-2 Commentary

Martin Curd

Professor Royall’s paper is both elegant and challenging. In my remarks, I
focus on the contrast between the likelihood conception of evidence and the
Bayesian account. I do this because, despite the rarity of the Bayesian ap-
proach among professional statisticians (Moore, 1997), it has been a domi-
nant influence on recent attempts by philosophers to understand the confir-
mation of scientific theories (Horwich, 1982; Salmon, 1990; Earman, 1992;

Howson and Urbach, 1993). My main concern is whether the likelihood par-
adigm of evidence can be plausibly extended from the realm of statistics to _

scientific theories in general.

According to the standard Bayesian approach, a hypothesis H is con-
firmed by an observation E (and thus F is evidence for H) if and only if the
posterior probability P(H| E) is greater than the prior probability P(H). The
two are related by the Bayesian equation P(H|E) = [P(H) X P(E|H)|/P(E),
where P(E) > 0. P(E|H) is the likelihood of H, and P(E) the expectedness of
the evidence. (To avoid clutter, the reference to background knowledge in
each of the factors in Bayes' equation has been omitted.) Although other
measures have been proposed, Bayesians often take the strength of E as ev-
idence for H (the degree of confirmation that E confers on H) to be some
positive increasing function of P(H|E) — P(H), the difference between the
posterior probability of H and its prior probability (Howson and Urbach,
1993; Christensen, 1999). Of the three terms on the right-hand side of Bayes’
equation, the likelihood P(E|H) is the least controversial since scientific the-

ories are often formulated such that (in conjunction with appropriate auxil-
iary hypotheses and background assumptions) we can deduce from them
the probability of events such as E. Thus, P(E|H)
objective. But what about P(H) and P(E)
subjectivist about P(H)
degree of belief that ap
tempered this subjectiv
example, no one is allo

can be regarded as being
? Some Bayesians are unashamedly
and regard the prior probability of H as simply the
articular scientist happens to have in H. Others have
ism by placing constraints on permissible priors (for
wed to assign a prior of zero to any noncontradictory
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fer greater evidential support on hypothesis H than on hypothesis J. It says
that if P(E| H) > P(E|]), then E supports H more than it does J. The second
part says that the likelihood ratio measures the strength of that comparative
support.

A striking feature of the likelihood paradigm is its insistence that evi-
dential support is essentially comparative. If Royall is right, there is literally
no such thing as the support that a prediction E gives to a hypothesis H;
there is only the degree of support that E gives to [ as compared with a ri-
val hypothesis, . Note that there is an important difference between eviden-
tial support being by its very nature comparative and its being contextual.
Bayesians agree that evidential support is contextual since the derivation of
predictions from H and the estimation of P(E) will depend on other hy-
potheses and background information. But although the Bayesian algorithm
requires contextual input, its output (telling us the degree to which E sup-
ports H) is noncomparative: it is not limited, in principle, to comparing E's
support of H with E's support of J. That we can make comparative judg:-
ments in contexts where absolute measures are difficult or practically im-
possible should occasion no surprise. For example, we can judge which of
two sticks is the longer or which of two objects is the heavier without hav-
ing first to ascertain the length or weight of each. But in these cases, under-
lying a comparative measure there is a pair of absolute values that grounds
the comparison. Why, according to the likelihood paradigm, should statisti-
cal evidence be so different in this regard? How, one might naively ask, can
we make sense of the notion that E supports H more than it does ] if there
is no such thing as E's support for H or E's support for /2 Moreover, if we try
to generalize the likelihood conception of comparative evidence into a gen-
eral account of evidence for scientific theories, its scope (unlike that of the
Bayesian account) would be severely limited. For it would apply only to the
comparison of pairs of rival theories with respect to the same evidence, leav-
ing unanswered such questions as “Is H supported more strongly by evi-
dence E than ] is by evidence F?”

As stated by Royall, the law of likelihood gives a sufficient condition for
greater evidential support, not a necessary condition, and so it implies noth-
ing about cases in which the likelihoods of competing hypotheses are the
same. But it would appear to be in the spirit of the likelihood account that,
when the likelihoods P(E| H) and P(E|]) are equal, neither H nor | receive
greater support from E. Either each receives no support from E or they each
receive the same degree of support. As far as E is concerned, H and ] are
evidentially on a par. Similarly, for separate pieces of evidence E and F, if
P(E|H) and P(F|H) are the same, so is their confirming power for H. But this
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consequence of the likelihood paradigm—same likelihood, same confirm-
ing power—seems contrary to our intuitions about evidence. To illustrate
the problem for the likelihood account, consider two cases: the problem of
irrelevant conjunction and the raven paradox.

The problem of irrelevant conjunction arises when we have two hypoth-
eses, H and (H & I), where [ is a contingent statement that is logically inde-
pendent of H and irrelevant to E. For simplicity’s sake, I shall focus on the
case in which H is deterministic, but the same problem can arise when H is
statistical. H (in conjunction with background information) entails a true ob-
servational prediction, E. It follows that the augmented theory (H & I) also
makes the same prediction, and the two likelihoods, P(E| H) and P(E| H & I)
are each equal to 1. Nonetheless, it is widely held that E confirms (H & I) lees’
strongly than it does H. For example, the observation of a white swan pr;)—
vides weaker support for “All swans are white and some gazelles are brown”
than it does for “All swans are white.” The Bayesian account can do justice
to this intuition by appealing to the role of prior probabilities in confir-
mation. For on the Bayesian analysis we have P(H|E) — P(H) = P(H) X
[(1— P(E))/P(E)],and P(H& I|E) — P(H&I) = P(H & I) X [(1 — P(E))/P(E)|
The factor in the square brackets is the same for both theories, and so their.
respective degrees of confirmation are proportional to the prior probabili-
ties, P(H & I) and P(H). Since (H & I) entails H, and I is a contingent state-
ment that is independent of H, P(H & I') must be less than P(H). Thus, E con-
firms (H & I') by a smaller amount than it confirms H; adding the irrelevant
conjunct to H lowers the confirmation provided by E. In this respect, then
the Bayesian approach to confirmation appears to be superior to the ]ikelii
hood account.

The key to the Bayesian solution of the raven paradox lies in the different
values assigned to P(E) by our background knowledge. Let H be the hy-
pthesis “All ravens are black,” which we shall write as “All Rs are B.” Since
H is logically equivalent to its contrapositive, “All non-Bs are non-Rs,” it
would seem that H should be confirmed not only by the observation ;)f a
bldffk raven but also by the observation of a nonblack nonraven (such as a
Whltﬂ shoe). Bayesians see no paradox here. They argue that the observation
of a _white shoe does confirm H, but only to a very small degree, a degree
t?lat is ‘much smaller than the confirmation conferred on H by th;: obsewa;
tion of a black raven. In this way, Bayesians explain why many people re-
gard the raven case as paradoxical when they first encounter it; for it is un-
derstandable that most of us are unable to distinguish a very l{;w degree of
confirmation from no confirmation at all. 3

Following Horwich (1982) we adopt a notation that reflects the manner
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in which evidence is collected: (R * B) is the discovery that a randomly se-
lected object that is already known to be a raven is black; (~B * ~R) is the

discovery that a randomly selected object that is already known to be non-

black is a nonraven. The asterisk indicates which component of each paired
observation is made first. To repeat, the observation reports include infor-

mation about the method used to generate the report. That said, it must be
the case that both likelihoods, P(R * B|H) and P(~B * ~R|H), are equal to
1; for, if all ravens are black, then the probability that a raven will turn out

to be black is 1; similarly, given H, the probability that a nonblack thing will

turn out to a nonraven is also 1. Thus, the Bayesian comparison of the con-
firming power of the observation report (R * B) with the confirming power
of the observation report (~B * ~R) depends on the inverse ratio of their
probabilities. In order to estimate those probabilities, we need to specify
some background information. Let x be the fraction of things in the universe
that are ravens, let y be the fraction of things that are black, and let & be the
fraction of things that initially are believed to be black ravens. This yields
P(R*B) = a/x,and P(~B* ~R) = |(1 — y) — (x — a}]/(1 — y). Comparison
of these two expressions shows that (R * B) must support H more strongly
than does (~B * ~R) if xis greater than a and (1 — y) is greater than x. Thus,
if we do not already believe that all ravens are black, (R * B) is stronger evi-
dence for H than is (~B* ~R) as long as we also believe that nonblack things
are more abundant than ravens. Both sorts of observation should increase
our confidence in H, but finding black ravens provides stronger support.

It is instructive to compare this Bayesian treatment of the raven paradox
with the likelihood analysis in Royall (1997). On Royall’s likelihood analysis,
the likelihoods of (R * B) and (~B * ~R) are not both equal to 1. They dif-
fer because the likelihood of each observation report is assessed with respect
to H as compared with the rival hypothesis | (according to which the pro-
portion of ravens that are black is some fraction less than 1); and, in the case
of (~B * ~R) reports, the calculation of the likelihood P(~B * ~R|]) de-
pends on the same background information about the relative abundance of
ravens and nonblack things as in the Bayesian analysis. Royall agrees that
when the sampling procedure yields reports of the form (~B * ~R), the ob-
servation of a nonblack nonraven has the power to confirm H; and that
when the number of nonblack things in the universe vastly exceeds the
number of ravens, the confirming power of such observations is very weak.
But these conclusions about evidential support, based on the likelihood par-
adigm, are essentially comparative: observations of the type (~B* ~R) pro-
vide only marginally stronger support for H than for /. Similarly, observa-
tions of the type (R * B) support H more strongly than they do J. Unlike the
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guide statistical reasoning, we can offer scientists who are perplexed by our
controversies (such as the one about “spending error rates”) nothing more
than conflicting expert judgments about what is sensible. I cannot share
Professor Cox’s satisfaction with this state of our discipline.

I now reply to comments by Martin Curd. The law of likelihood answers
a fundamental question about empirical evidence: When does an observa-
tion constitute evidence supporting one hypothesis vis-d-vis another? The
law says it is when the two hypotheses imply different probabilities for the
observation. It says that the hypothesis that implies the greater probability
is the better supported and that the probability ratio measures the strength
of the evidence.

Professor Curd contrasts this concept of evidence to the Bayesian account,
where only one hypothesis is made explicit, the question being, When does
an observation constitute evidence supporting a hypothesis? The Bayesian
answer is, When the observation has the effect of increasing the probability
of the hypothesis. Preferring the Bayesian account, Professor Curd challenges
the law of likelihood by presenting two examples where it purportedly leads
to conclusions that seem “contrary to our intuitions about evidence.”

I want to suggest that the law of likelihood is not a threat, or even an al-
ternative, to the Bayesian view, but that to the contrary it constitutes the es-
sential core of the Bayesian account of evidence. My claim is that the Bayes-
ian who rejects the law of likelihood undermines his own position. Then I
will argue that this act of self-destruction is unwarranted, because Professor
Curd’s argument leading to rejection of the law springs from a misunder-
standing. In this discussion I will assume that the probabilities obey the
usual (Kolmogorov) axioms. Since Bayes’ theorem is derived from those ax-
ioms, I find it hard to imagine a Bayesian who rejects them.

According to Professor Curd, the Bayesian interpretation is that an ob-
servation E as evidence for H when P(H|E) > P(H). His analysis assumes the
existence of the three terms, P(E|H), P(H), and P(E), that appear on the
right-hand side of what he calls Bayes’ equation,

P(H|E) = P(E|H)P(H)/P(E).

Now if H has probability P(H) then the axioms imply that its negation ~H
has probability 1 — P(H), and that furthermore P(E) can be expressed as*

4. This result is a special case of what is sometimes called the theorem on total probability,
which is essential to Bayes’ theorem (Kolmogorov, 1956, sec. 4).
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P(E) = P(E|H)P(H) + P(E|~H)[1 — P{H)).

Rearranging this expression, we see from the three quantities that the Bayes-
ian must supply, P(E|H), P(H), and P(E), we can deduce the value for the
probability of E that is implied by the hypothesis® ~H:

P(E|~H) = [P(E) — P(E|H)P(H)]/|1 — P(H)].

If we return to the critical inequality, P(H|E) > P(H), and replace P(H|E)
with the expression given by Bayes’ equation, P(H|E) = P(E|H)P(H)/P(E),
we see that the Bayesian interprets E as evidence for H if and only if
P(E|H) > P(E). And if in this last inequality we substitute the expression
for P(E) displayed above, we see that the Bayesian’s criterion is equivalent to
P(E|H) > P(E|H)P(H) + P(E|~H)[1 — P(H)], which is equivalent to

P(E|H) > P(E|~H).

That is, P(H|E) > P(H) if and only if P(E|H) > P(E|~H).

When is E “evidence for H” in the Bayesian scheme? When does P(H|E)
exceed P(H)? It is precisely when H implies a greater probability for E than
the alternative hypothesis ~H does. It is precisely when the law of likeli-
hood says that E is evidence supporting H over ~H.

The Bayesian may prefer not to make P(E|~H) explicit—he may prefer
to leave this object buried within P(E). But whether he chooses to make it
explicit or not, the value of P(E|~H) is determined by P(E|H), P(E), and
P(H). And when all the cards are laid on the table, the winner of the Bayes-
ian’s game is decided according to the law of likelihood—the hypothesis (H
or ~H) that is better supported by the observation E is the one that implies
the greater probability for that observation. Hypothesis H “is confirmed by E”
if and only if E is more probable if H is true than if H is false. The Bayesians
qualitative conclusion (e.g., that E is evidence for H rather than against it)
must conform to the law of likelihood.

5. The same deviation applies when there is a set of disjoint hypotheses {H}. If ¥ P(H) <
1, then from P(H,), P(E| H,), and P(E), we can deduce the probability of E under the “notorious
catchall hypothesis, H,,” i.e., P(E|H,) = [P(E) — = P(E|H)P(H,))/[1 — 2 P(H})]. The Bayesian
cannot simultaneously claim (i) to know the terms on the right-hand side of this equation
and (ii) that P(E|H,) is nonexistent or unknowable without violating the axioms of probabil-

ity theary.
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But are the two accounts of evidence in quantitative accord? One says un-
equivocally that the strength of the evidence for H versus ~H is measured
by the likelihood ratio P(E|H)/P(E| ~H).¢ The other, according to Professor
Curd, is less definite: “Bayesians often take the strength of E as evidence for
H to be some positive increasing function of P(H|E) — P(H).” As we have
seen, the difference P(H|E) — P(H) does point in the right direction. But as
a measure of the strength of the evidence it is curious. It says that E cannot
be strong evidence for H when P(H) is large, i.e., when there is strong prior
evidence for H. Thus E can be strong evidence for H when it flies in the face
of extensive previous experience (P(H) is small), but not when it is consis-
tent with that experience (P(H) near 1). Now, it is plausible that Eis, in some
sense, more valuable, more important, or more newsworthy when it elevates
a previously implausible hypothesis to respectability than when it merely
confirms what was already believed. But that E is stronger evidence in the
former case is not at all clear.

This counterintuitive aspect of the way the difference, P(H|E) — P(H),
depends on the prior probability P(H) suggests that the Bayesian should
adopt some other measure. In fact the Bayesian I. ]. Good (1968) proposed
some desiderata for an evidence measure and proved they imply that the
measure should be an increasing function (the logarithm) of the likelihood
ratio P(E|H)/P(E|~H), which is independent of P(H).

Thus, it is clear to me that the Bayesian cannot escape either the qualita-
tive or quantitative conclusions of the law of likelihood. Professor Curd, on
the other hand, sees a problem with “the likelihood account” of evidence,
and he gives two examples intended to illustrate that problem. What I think
they actually illustrate is the misconception that is expressed in his state-
ment of the problem: “for separate pieces of evidence E and F, if P(E|H)
and P(F|H) are the same, so is their confirming power for H. But this con-
sequence of the likelihood paradigm—same likelihood, same confirming
power—seems contrary to our intuitions about evidence.”

What does the law of likelihood say when one hypothesis attaches the
same probability to two different observations? It says absolutely nothing.
The law of likelihood applies when two different hypotheses attach proba-
bilities to the same observation. It states that the ratio of the probabilities,
P(E|H)/P(E|]), measures the evidence in the observation E for hypothesis H

6. The answer to Professor Curd’s question, “Is H supported more strongly by evidence £
than J is by evidence F?” is straightforward: E supports H versus ~H more strongly than F
supports J versus ~] if and only if P(E|H)/P(E|~H) = P(F|])/P(F|~]).
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vis-a-vis hypothesis /. Although it says that their ratio measures the evi-
dence, the law attaches no evidential meaning to either probability in isola-
tion. In the absence of an alternative hypothesis, P(E|H) is not the sup-
port for H, the strength of the evidence for H, or the confirming power of
E for H.

Consider an example: Let H be the hypothesis that the proportion of
white balls in an urn is 1/2. For the two observations

E: 1 white ball in 1 draw and
F: 10 or fewer white balls in 21 independent draws,

the probabilities P(E|H) and P(F|H) are the same—both equal 1/2. But the
law of likelihood says nothing about the “confirming power” of E for H or of
F for H. It does address the interpretation of these observations as evidence
for H vis-a-vis any other hypothesis that also implies probabilities for them,
such as the hypothesis J that the proportion of white balls is 1/4. Since
P(E|]) = .25 and P(F|]) = .994, the likelihood ratios are P(E|H)/P(E|]) = 2.0
and P(F|])/P(FIH) = 1.987, so the law of likelihood says that E supports H
over J, that F supports ] over H, and that the evidence has nearly the same
(weak) strength in both cases.

Now consider a different alternative to H. Let K be the hypothesis that the
proportion of white balls is 3/4 so that P(E/K) = .75 and P(F|K) = .0064. Ob-
servation E is weak evidence supporting K over H (likelihood ratio = 1.5),
while F is strong evidence for H versus K (likelihood ratio = 78). Thus, al-
though observations E and F are equally probable under hypothesis H, E is
evidence for H vis-a-vis hypothesis ], and against H vis-a-vis K. And in each
case the observation F has the opposite evidential meaning.

The likelihood view is that observations like E and F have no valid inter-
pretation as evidence in relation to the single hypothesis H. I have discussed
elsewhere (Royall, 1997, sec. 3.3) the futility of efforts to attach evidential
meaning to an observation in relation to a single hypothesis that is not log-
ically incompatible with the observation.

Finally, I want to compare the Bayesian and likelihood analyses of the
raven paradox. Professor Curd discusses the paradox in terms of the pro-
portions in a 2 X 2 table:

black nonblack
ravens o ¥ = X
nonravens y— o | i il v 1 —x
y Loy 1
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Here x represents the proportion of the objects in the population under con-

sideration that are ravens, y is the proportion of objects that are black, and
« is the proportion that are black ravens.

An observation R * B represents an object drawn at random from the first
row that is found to come from the first column (a raven that is found to be

black), and an observation ~B * ~R represents a draw from the second col- |

umn that is found to come from the second row (a nonblack thing that
proves to be a nonraven). The likelihood analysis is as follows:

The hypothesis H (all ravens are black) asserts that & equals x, implying
that the probability of R * Bis 1.

The alternative hypothesis, /, asserts that a has a value less than x,
which implies that the probability of R * Bis a/x << 1.

Therefore the law of likelihood says the observation R * B is evidence
supporting H over / by the factor: P(R * B|H)/P(R * B|]) = 1/(a/x) =
xfa.

Similarly H implies that the probability of ~B * ~R is 1, while ] implies that
the probability is (1 — x — y + a@)/(1 — y) < 1, so the law of likelihood says
the observation ~B * ~R is evidence supporting H over ] by

PB* ~RIH) _ ! P

P~B*~Rl)) (I-x—y+a)(1-y) 1-x—y+a

These are exactly the same expressions on which Professor Curd bases his

Bayesian analysis. His measures of “the relative confirming power for H of

the two different types of observation” are just the two likelihood ratios.
As I noted earlier, the Bayesian may choose not to speak of the alterna-

tive to H. His use of the expression “the relative confirming power for H of

the two different types of observation,” without reference to an alternative,

obscures the fact (revealed in the appearance of the quantity « in his for-

mulae) that the observation can properly be said to confirm H only in rela-
tion to an alternative hypothesis that assigns lower probability to that ob-
servation than H does. It obscures the fact that his statement “reports of the
form (R * B) confirm H much more strongly than do reports of the form
(~B* ~R)” means nothing more or less than that the first report’s likelihood
ratio, P(R * B|H)/P(R * B|]) = x/a, is the greater.

The Bayesian’ failure to make explicit the alternative hypothesis that is
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jmplicit in his analysis obscures the fact that the rock on which his analysis
is built is the law of likelihood.
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6 Why Likelihood?

Malcolm Forster and Elliott Sober

ABSTRACT

The likelihood principle has been defended on Bayesian grounds, on the
grounds that it coincides with and systematizes intuitive judgmen;s about
example problems, and by appeal to the fact that it generalizes what is true
w.hfen hypotheses have deductive consequences about observations. Here we
divide the principle into two parts—one qualitative, the other qu;mtita.tive
—and evaluate each in the light of the Akaike information criterion (AIC)

Both turn out to be correct in a special case (when the competing hypoth
ses have the same number of adjustable parameters), but not othgr\«\?i}s)e :

INTRODUCTION

Mark Antony said that he came to bury Caesar, not to praise him. In con-
trast, our g(?al is neither to bury the likelihood concept nor to prai;se it. In-
:;Ead of praising it, we will present what we think is an important critici.sm.
bm‘v\;e.ver,‘the l{pS}lDt o.f this criticism is not that likelihood should be buried

Justification of likelihood, properly understood. }
Witl}?)letf;l};e we g.t?t to our (,:riti‘cism of likelihood, we should say that we agree
.- crl'smzms tha}t h.kehhoodists have made of Neyman-Pearson-Fisher
like]ihc,o;? i Bayesmmsrp (Edwards, 1987; Royall, 1997). In our opinion,
. Howezo s}rery good indeed when it is compared with these alterna-
o er, the problem ofa.l positive defense of likelihood remains. Roy-

egins his excellent book with three kinds of justification.

We would like to th,
) ank Ken B ; e . :
Richard Royall, and th, en Burnham, Ellery Eells, Branden Fitelson, Ilkka Kiesepp,

e editors of this volume for helpful comments on an earlier draft.
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