SPECIES

that they have been putting taxa names in a meta-
physical category to which such names do not be-
long. Instead of being highly aberrant classes. they
are typical individuals (see Individuality).

But this discussion does not entail anything
about the metaphysical nature of the species cate-
gory itsell. Species taxa are spatiotemporally re-
stricted; the species category is not. It has all
the generality needed to count as a kind. Species
as evolvers are not restricted to Earth. In all prob-
ability, they have evolved numerous times through-
out the universe. A particular lineage cannot evolve
more than once, but lineages as such can recur. In
addition, if species are that which evolves, then
they function in an important scientific theory.
The net effect is that species as such are a natural
kind. Homo sapiens as a taxon is not a natural kind;
the species category is.

Davip Hurt
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PHILOSOPHY OF STATISTICS

Philosophy of statistics may be seen to encompass
the epistemological, conceptual and logical prob-
lems revolving around the use and interpretation
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of the methods of mathematical statistics. In con-
trast to the better known philosophies of science,
physics, and mathematics, work in philosophy of



statistics is as likely to be engaged in by practicing
statisticians as by philosophers of science. Accord-
ingly. contributions to philosophy of statistics
might be regarded just as much as contributions to
statistics as to philosophy of science. To make this
entry useful and of manageable length, it focuses
on the main philosophical debates relating to the
modern methodology lor statistical inference: sig-
nificance tests, hypothesis testing, confidence inter-
val estimation, likelihood, and Bayesian methods.
This still leaves a huge territory marked by seventy
vears of debates widely known for reaching unusual
heights both of passion and of technical complexity.
To get a handle on the movements and cycles with-
out too much oversimplification or distortion, three
main waves of debates in philosophy of statistics
will be distinguished: 19301960, 1960-1980, and
1980 to the present.

A core question that underlies the debates is:
What is the nature and role of probabilistic con-
cepts. methods, and models in making inferences in
the face of limited data, uncertainty, and error? The
different answers to this question have immediate
ramifications for all of the central issues around
which much of the debates revolve: what tasks do
mathematical methods of statistics perform? And
what criteria or principles are appropriate for eval-
uating them?

Two Roles for Probability in Inference

There are two distinct philosophical traditions re-
garding the role of probability in statistical infer-
ence in science. In one. probability is used to
provide a post-data assignment of degree of proba-
bility. confirmation, support, or belief in a hypoth-
esis. while in a second, probability is used to assess
the probativeness, reliability, trustworthiness, or
severity of a test or inference procedure.

Confirmation Theory

Conceding that all attempts to solve the problem
of induction (see Induction, Problem of) suffered
from circularity (Salmon, 1967), philosophers of
induction (e.g., in the 1970s) turned their attention
instead to constructing logics of induction or con-
Sfirmation theories that would, ideally, reflect
“inductive intuition.” The goal would be to supply
means to compute the degree of evidential relation-
ship between given evidence stalements, e, and a
hypothesis, H (see Confirmation Theory). A natu-
ral place to look for such a computation is the
definition of conditional probability, or Bayes's
theorem:
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P(H |e)=Ple| H)P(H)/P(e)

where P(e) = Ple| H)P(H) + Ple|-H)P(—~H).

Computing P(H |e), the posterior probability,
requires starting out with a probability assignment
to all of the members of —#, and a major source of
difficulty through all three waves is how to obtain.
Justify, and interpret these prior probabilities. In-
sofar as the computed degrees of confirmation are
viewed as analytic and a priori, their relevance for
predicting and learning about empirical phenome-
na is problematic; insofar as they measured subjec-
tive degrees of belief, their relevance for giving
objective guarantees of reliable inference is unclear
(see Bayesianism: Confirmation Theory; Inductive
Logic).

The Error-Probability Philosophy (‘Sampling
Theory’)

A distinct philosophical tradition uses probabili-
ty to characterize a procedure’s overall reliability in
a series of (actual or hypothetical) experiments or
in repeated sampling (hence, ‘sampling theory’).
These probabilistic properties of statistical proce-
dures are called error frequencies or error probabil-
ities (e.g., significance levels, confidence levels).
Deliberately designed to reach conclusions about
statistical parameters without invoking prior prob-
abilities in hypotheses, error probabilistic methods
use probability to quantify how frequently meth-
ods discriminate between alternative hypotheses
and how refiably they facilitate the detection of
error. As with logics of confirmation, there are
connections with philosophy of induction. as in
Peirce, Braithwaite, and, to some extent, Popper
(see Popper, Karl Raimund). These two contrast-
ing philosophies of the role of probability in statis-
tical inference correspond to the core issues at the
heart of the debate in all three waves of philosophy
of statistics.

The First Wave

Quantitative methods of statistical inference in-
volve drawing conclusions about parameters on
the basis of the observed values of random
variables. Statistical methods may be seen to con-
nect questions about the phenomenon or data-
generating source to questions about distributions
of random variables that model the data-generat-
ing source or population. Thus the conception of
a statistical model wherein these parameters are
defined is an important component of statistical
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inference methods. The area of model specification
and model selection has its own set of philosophical
issues that will not be taken up here. A statistical
hypothesis cannot be just any claim, but must give
probability assignments to the different experimen-
tal outcomes or sample space =. typically in terms
of the parameters of the model. That is. for any x in
=. H assigns “the probability of x under H,” writ-
ten P(x;H). This notation helps avoid confusion
between a probabilistic computation under a
model and conditional probabilities needed for
Bayes’s theorem, P(x|H), without prejudging
issues. (An alternative notation some find useful is
P(x|| H); see Friedman 1995).

Fisherian “‘Simple” Significance Tests

The modern approach to statistical inference was
initiated by Fisher, who introduced the main con-
cepts and procedures of statistical significance
tests. Fisher’s strong objections to Bayesian infer-
ence (Fisher 1935, 1955), and in particular to the
use of prior distributions, led Fisher to develop
ways to express the uncertainty of inferences
without deviating from [requentist probabilities.

The significance test is a procedure with the fol-
lowing components: there is a null hypothesis H,
that is an assertion about the distribution of the
sample X = (X),..., Xy). and a function of the
sample, d(X). the test statistic, which measures the
difference between the data xq = (xy,...,x, ), and
null hypothesis H,. The larger the value of d(x;).
the further the outcome is from what is expected
under Hy, with respect to the particular question
being asked (x; represents a particular realiza-
tion of X). For an observed difference d(x;), the
test computes the p-value, or the probability of a
difference larger than d(x,), computed under the
assumption that Hy is true:

plxo) = P(d(X) > d(xo); Hy).

The p-value may be regarded as a measure of
discordancy from H: the smaller the significance
level, the greater the discordance between v and
Hy (Kempthorne and Folks 1971),

Fisher described the significance test as a proce-
dure for rejecting the null hypothesis and inferring
that the phenomenon has been “experimentally
demonstrated” (Fisher 1935, 14), where the latter
inference corresponds to finding a small p-value,
such as .05 or .01. How to justify this is a point
of philosophical debate. One highly influential ex-
ample is this. Suppose that x; is evidence against
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Hy just in case x; is statistically significant at a
small level p (or smaller). Then p is the maximal
probability of rejecting H, when Hy is actually
a correct description of the underlying data-
generating mechanism. So there is only a small
probability of erroneously rejecting Hy, i.e., com-
mitting what Neyman-and Pearson call a rype 7
error (Cox, 1958). Commonly used significance
tests—Pearson’s chi-square goodness of fit, the
Student ¢ test, the F test in analysis of variance—
are regularly used to distinguish real effects of
importance from apparent effects actually due to
random sampling or uncontrolled variability.

The Alternative or “*Non-Null” Hypothesis

Evidence against H; would seem to indicate evi-
dence for some alternative, if only for a directional
departurc from the null value in a given direc-
tion. Although Fisherian significance tests strictly
consider only the null hypothesis. Neyman and
Pearson tests introduce as well an alternative H,.
Despite the bitter disputes with Fisher that were to
erupt soon after their early developments of tests.
Neyman and Pearson, at the outset, regarded their
work as merely placing Fisherian tests on firmer
logical footing by taking explicit account of an
alternative to the null hypothesis.

Nevman-Pearson (N-P) Tests The N-P hypoth-
esis test. mathematically considered, is a rule that
maps cach possible outcome x = (x,....: X, ) onto
one of two hypotheses, the test or null hy-
pothesis Hy or an alternative hypothesis H,. As in
the Fisherian (simple) significance test, there is a
test statistic d(X). in terms of which the test rule is
defined. In the N-P test, however, the values of
d(X) that will be taken to reject H, are fixed at
the outset, by a predesignated choice of significance
level. Most importantly, the null and alternative of
an N-P test exhaust the parameter space of the
statistical model, whereas in the Fisherian test
there is the single null hypothesis. as against its
logical complement.

The N-P error probabilities are computed under
the assumption that the statistical model is ade-
quate; what is being tested are the values of one
or more parameters governing the distribution. For
simplicity, illustrations here keep to the case of
only one unknown parameter. Although N-P theo-
ry provides distinct tests of the assumptions of the
statistical model, and the whole issue of model
validation is important philosophically. the matter
will not be explicitly discussed here.



Example, Test T(z): Consider a random sample
of size my X = (X 10050 Y, )., where it is assumed
that each X; is normal N(u.¢”), independent and
identically distributed (IID). Test 7{x) denotes
the familiar test of Hy: g < pg against Hy: g > .
where H, is the null, and H, the alternative hy-
pothesis. Because H, includes only positive dis-
crepancies from Hy, this is called a one-sided test.
For simplicity, let the standard deviation ¢ be
known —for instance, let ¢ = 1. The test statistic
for T(a) is: d(X) = (X — u)/ox, where X is the
sample mean with standard deviation ¢, = (oy/n).
The N-P test with significance level » rejects Hy
with data xy if and only if’ d(xy) reaches the preset
significance level o——for instance, ¢, = 1.96 for
=025, 40

Test T(a): if d(xp) > c¢,, reject Hy,
if d(xg) < ¢y, accept Hy,

The set of all outcomes that lead to “reject Hy' is
called the rejection region. ““Accept’” and “‘reject™
should be regarded as parts of the mathematical
apparatus whose interpretation must be separately
considered.

The test is specified so that the probability of a
type I error, =, is fixed at some small number, such
as .05 or .01, the significance level of the test:

Type | error probability
= P(Test T(x) Rejects Hy; Hy) < o

Since “Test T(x) Rejects Hy" iff {d(X) > ¢}, 1t
follows that

Type I error probability = P(d(X) > ¢,; Hy) < o

N-P test principles then seek out the test that at
the same time has a small probability of commit-
ting a type Il error, . Since the alternative hypoth-
esis H,, as is typical, contains more than a single
value of the parameter, it is composite, the type 11
error probability is evaluated at a specific point
{t =y, and thus is abbreviated fi(u):

P(Test T(x) does not reject Hy; it = 1) = P(d(X)
S Cyy H[}) = ﬁ(ﬁil}:\ for Hy = .

The “best” test with significance level f (f 1t
exists) is the one that at the same time minimizes
the value of ff for all y; > pg, or equivalently,
maximizes the power:

POW(T(x); i) = P(d(X) > cyipy ), for all puy = .

T(z) is said to be a wniformly most powerful
(UMP) = significance level test. Letting o = .025,
T(x) If d(x) > 1.96, reject Hy. The rejection
region for the corresponding two-sided .05 test,
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Hy: o= py versus Hy: u # pp, abbreviated as
T(2u) is: {x : |[d(x¢)] > 1.96}.

Error Probabilities Versus Conditional Probabilities
Confusion often results from interpreting the type |
error probability: P(d(X) > ¢,; Hy) as a condition-
al probability statement of the form: P(d(X) >
¢y|Hy). From the definition of conditional proba-
bility it follows that

P(d(X) > cy|Hp)
= [P(d(X) > ¢y, it = wg)|/ P(pt = pp).

However. neither the numerator P(d(X) > c..
(= pg) nor the denominator P(u = uy) of this
ratio are meaningful unless the parameter may be
assumed to be a random variable. as in a Bayesian
approach (see Bayesianism).

In the N-P testing paradigm. there is no
probability assignment to the conjunctive event
(d(X) > ¢, it = pg) or to (u = pg). The statement
P(d(X) > c,; H), should be interpreted as the prob-
ability of rejecting Hy when evaluated under the
hypothetical scenario that the observed outcome
xo has arisen from the distribution described in
Hy. Within the error probability (frequentist)
framework, a statistical hypothesis H either does
or does not adequately describe the process gener-
ating the data. There is no suggestion that any H
is precisely true; indeed, the purpose of tests is
to evaluate discrepancies of specified sorts. But
probabilities enter in this cvaluation only as
error probabilities.

Inductive Behavior Philosophy

Philosophical issues and debates arise once one
begins to consider the uses to which these formal
statistical tools might be put, the interpretations of
the formal apparatus, and the justifiability of asso-
ciated principles of tests. The proof by Neyman
and Pearson of the existence of best tests set the
stage [or the mathematical development of statisti-
cal tests as rigorous rules for ““deciding” to accept or
reject hypotheses. In this conception, to infer the
conclusion of the significance testing argument,
‘data xq is evidence against H,, or ‘x, indicates the
falsity of H,” 1s to take a decision of a sort, with a
calculable risk. Wishing to draw a stark contrast
between this conception of tests and those of Fisher
as well as Bayesians (Jeffreys), Neyman declared
that the goal of tests is not to adjust beliefs but
rather to ““adjust behavior” to limited amounts of
data. Tests, accordingly. are not rules of inductive
inference but rules of behavior. The value of tests as
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rules of behavior is that it may often be proved that
it we behave according to such a rule ... we shall
reject /1 when it is true not more, say, than once in a
hundred times, and in addition we may have evi-
dence that we shall reject H sufficiently often when
it is false™ (Neyman and Pearson 1933, 142).

Debates Between Fisher and Neyman and Pearson:
The 19505

The dispute between ““inductive behavior” and
“inductive inference” coming on top of the break
between Fisher and Neyman. which began in 1935,
commingled philosophical, statistical, and person-
ality clashes. Fisher (1955) denounced the way that
Neyman and Pearson transformed “his” signifi-
cance tests into “acceptance procedures,” wherein
tests are viewed as mechanical rules or recipes for
deciding to accept or reject statistical hypothesis
Hy. and the concern has more 1o do with speeding
up production or making money than in learning
about phenomena. In responding to Fisher, Pear-
son clearly distanced himself from Neyman’s “in-
ductive behavior” jargon. calling it “Professor
Neyman's field rather than mine™ (Pearson 1955,
207). However, Pearson protested that neither he
nor Neyman were “‘speaking of the final acceptance
or rejection of a scientific hypothesis on the basis of
statistical analysis. ... Indeed, from the start we
shared Professor Fisher’s view that in scientific
enquiry. a statistical test is ‘a means of learning’”
(204-205).

Neyman. too, despite promoting “inductive be-
havior as a major concept in philosophy of science™

(1957a), clearly denounced “mechanical” uses of

significance tests (in responding to Fisher), and
had no hesitation in using N-P tests for “inference”
or reaching “conclusions.” Tracing out the thrust
and parry between Neyman, Pearson, and Fisher in
the 1950s will amply reward those interested in what
the key players “really thought.” Later on, the N-P
tests became so formally entrenched in the decision-
theoretic framework of Wald (1950) that many of
the qualifications by Neyman and Pearson in the
first wave have been overlooked in the philosophy
ol statistics literature.

Confidence Interval Estimation Procedures
Statistical inference can take the form of esti-
mation procedures as well as tests. In confidence
interval (CI) estimation procedures. a statistic is
used to set upper or lower (one-sided) or both
(two-sided) bounds. The concept of a confidence
interval with a frequentist interpretation was first
introduced by Neyman (1935) as a way to extend
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point estimation to interval estimation. with a pre-
designated error rate. For a parameter. say. u. a
(1-2) confidence interval estimation procedure
leads to estimates of form:

=X +e

Different sample realizations x lead to different
estimates, but one can ensure that (1 — ) 100% of
the time the true parameter value pu, whatever it
may be. will be included in the interval formed.

Dualities Between One- and Two-Sided Intervals
and Tests

There exists a duality relationship between Cls
and hypothesis tests that can be used to derive
optimality properties for Cls analogous to those
of tests. The general correspondence between a
(I —«) confidence intervals and tests is this: the
confidence interval contains the values that would
not be rejected by the given test at the specified level
of significance (Neyman 1935); they would not
be rejected because they would not be statistically
significant (from the observed x,) at significance
level «. by the corresponding test. Consider test
Tiz). It follows that the (1 — %) one-sided interval
corresponding to test T(«) is & > X — c,(ay/n). In
particular, the 97.5% confidence interval estimator
corresponding to test T(x) is:

H o= ‘: —= ]9()\1‘7 \/H,'l

To grasp the duality, one must think not of a
fixed null hypothesis, e.g.. u =0, but rather of
different values for u, that might have been tested.
In particular, were the test of null hypothesis.

Hy: < (¢, (6v/n). Hy would have been rejected
at level o Similarly, the 95% CI for u
corresponding to the two-sided test, T(.05) is:

(X — 1.96(cv/n) < it < X — 1.96(c/n)).

These dualities will figure importantly in wave I11.

Fisher’s Criticism of Confidential Intervals:
Fiducial Intervals

Calling (I — &) the “confidence level” of the esti-
mation procedure was infelicitous. It encourages
the supposition that (1 — «) is the degree of confi-
dence to be assigned the particular interval estimate
formed, once X is instantiated with v. That would
be fallacious. Once the estimate is formed. either
the true parameter is or is not contained in it. One
can say only that the particular estimate arose from
a procedure which, with high probability, (1 — o),



would contain the true value of the parameter,
whatever it is.

Fisher, in what is regarded as one of the most
puzzling episodes in philosophy of statistics.
seemed to advocate this fallacious instantiation
for certain contexts. Fisher (1955) claimed N-P
confidence interval methods are guilty of violating
the principles of deductive logic by allowing

P(x —cilovn) Sy < ¥ —celovn)) =1-a (1)

and yet upon observing a particular X, denying that
the probability holds for the resulting CI estimate:

(X —ex(v/n) € u < X —cy(v/n)) (2)

Fisher claimed that, at least in certain special
cases, it was possible to assign a probability or
“fiducial distribution™ to the mterval statement
about p, while keeping within the sampling distri-
bution perspective, a move that Savage (1962) de-
scribed as “an atlempt to make the Bavesian
omelet without breaking the Bavesian eggs.” Al-
though the possibility of nonfallaciously instantiat-
ing into statement (1), to arrive at (2), without
introducing a prior probability distribution, has
tantalized researchers in philosophy of statistics,
Fisher’s fiducial argument is generally regarded as
a lapse. even by Fisher's most ardent admirers
(Hacking 1965; Seidenfeld 1979).

The Second Wave

The set of issues that swirled around the philoso-
phy of statistics debates from the early 1960s
through the late 1970s echoed the earlier debates
but reflected as well changing problems in philoso-
phy of science, statistics, and the statistical prac-
tices in the social sciences. Foundational debates

of this period are noteworthy for the amount of

direct interactions between philosophers of science
and statistics: as is in evidence n the two signifi-
cant collections of Godambe and Sprott (1971) and
Harper and Hooker (1976).

As the most impressive mathematical develop-
ments of N-P theory occurred in a decision-
theoretic framework, generalized further by
Wald (1950)—the Neyman-Pearson-Wald (NPW)
approach—it was the behavioristic-decision para-
digm that bore the brunt of criticism from philoso-
phy. Critics aimed at two central features of the
“accept-reject” behavioristic conception of N-P
tests: first. the justification of tests in terms of low
(long-run) error rates alone, and second. the func-
tion of tests as routine, mechanical, or automatic
accept-reject routines. While these features, taken
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strictly. give a caricature of tests—even as their
founders intended and used them——they are at the
heart of the philosophical criticisms of N-P testing.
Not all critics call for tools that are more inferential
and less decision-theoretic; some complained that
N-P theory was at best a halfway house to a full-
blown decision theory, with explicit loss functions,
and prior probabilities that would be combined
with measures of evidence (see Decision Theory).
Because critics from both these camps hold a de-
gree of confirmation stance. while error statisti-
cians look to probability for objective measures of
reliability of procedures, the disputants often talk
past each other.

Error Probability Principle Versus Likelihood
Principle

Hacking (1965) framed the main lines of criticism
by philosophers in charging “Neyman-Pearson
tests as suitable for before-trial betting, but not
for alter-trial evaluation™ (99). Analogous charges
are put in terms of distinctions between “initial
precision’ versus “final precision.” and “before-
data vs. after data™ evaluation. According to such
“post-data criticisms,” N-P tools license inferences
that while satisfactory from the pre-data viewpoint,
seem unsatisfactory according to one of the post-
data measures of (absolute or relative) evidential
strength. The more general point may be put as
follows:

e Data sets x and y may have exactly the same
evidential relationship to hypothesis ., on a
given degree of support measure, yet warrant
different inferences according to significance
test reasoning because x and ) arose from tests
with different error probabilities.

Such charges have weight, of course, only to the
extent that one accepts the particular degree of
support measure involved. the most common
being based on the likelihood function of H. often
written L(/; x). where L(/; x) = P(x; H ). There is
often confusion about likelihoods. Unlike the
probability function, which assigns probabilities
to the different possible values of the random vari-
able of interest X, under some fived value of the
parameter(s) such as . the likelihood function
gives the probability (or density) of a given ob-
served value of the sample under the different
values of the unknown parameter(s) such as s
Hacking (1965) championed an account of com-
parative support based on his “law of likelihood™:
Data x support hypotheses /; more than H> il
the latter is mwore likely than the former, ie..
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P(x: Hy) > P(x; I15). When there are many hypoth-
eses, one takes the one that maximizes the likeli-
hood. A problem is that there is always the rival
hypothesis that things had to turn out the way they
did. If such an alternative can always be con-
structed. then it will be possible to find H less well
supported than some other hypothesis. even if H is
true. Hacking (1965) rejected this likelihood ap-
proach on these grounds, but likelihoodist ac-
counts are advocated by others and remain the
focus of active interest (Birnbaum 1961; Royall
1997).

The likelihood function has an important role
in all of the statistical accounts, but for those
who endorse the likelihood principle. likelihoods
suffice to convey “all that the data have to say.”
That is the gist of the likelihood principle—a pivot
point around philosophy of statistics discussions:

According to Bayes's thearem, Pix|u)...constitutes the
entire evidence of the experiment, that is, it tells all
that the experiment has to tell. More fully and more
precisely, if y is the datum of some other experiment,
and if it happens that P(x|u) and P(y|u) are proportional
functions of w (that is, constant multiples of each ather),
then each of the two data x and y have exactly the
same thing to say about the values of  .... (Savage
1962}

By contrast, the error probabilist must consider, in
addition, the sampling distribution of the likeli-
hoods (under hypotheses of interest). Thus, as Sav-
age (1962) argued. significance levels and other
error probabilities all violate the likelihood princi-
ple. leading to one of the most crucial philosophical
controversies.

Debate Over the Relevance of the Stopping Rule
The conflict between significance levels and the
LP is often illustrated by a variation on the two-
sided test T(22): a random sample from a normal
distribution with mean u and standard deviation 1,
that is, Xj ~ N(u. 1); with Hy: p =0, and Hy: u # 0.
However, instead of fixing the sample size n in
advance, n is determined by a stopping rule:

Keep sampling until |x| > 1.96/\/n.

The probability that this rule will stop in a finite
number of trials is 1. regardless of the true value of
s 1L 1s a proper stopping rule. Whereas with n fixed
in advance. such a test has a type | error probabili-
ty of .05, with this stopping rule, the actual signifi-
cance level differs from, and is greater than .035.
Significance levels are sensitive to the stopping
rule: and there is considerable literature on error
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probability adjustments for “optional stopping.”
that is, on sequential tests (e.g., Armitage 1961).
By contrast, since likelihoods are unaffected by
this stopping rule, the LP proponent denies there
is an cvidential difference between the two cases.
For some, this was yet further grounds to embrace
a Bayesian account:

The likelihood principle emphasized in Bayesian sta-
tistics implies,...that the rules governing when data
collection stops are irrelevant to data interpretation. It
is entirely approprioate to collect data until a point has
been proved or disproved. (Edwards, Lindman, and
Savage 1963, 193)

For others it only underscored the point raised by
Pearson and Neyman, that “knowledge of [the like-
lihood ratio] alone is not adequate to insure control
of the error involved in rejecting a true hypothesis™
(Pearson and Neyman 1930, 106). The literature
here is vast: at best one can list sources (beyond
those already mentioned) with fairly broad citations
(Cox and Hinkley 1974; Mayo and Kruse 2001).

The key difference between the two perspectives
is that the holder of the LP considers the likelihood
of the acrual! outcome, that is. just dix), whereas
the error statistician considers the likelihoods of
values other than the one observed in order to assess
the properties of the test procedure. The calcula-
tion of error probabilities, the sampling distribu-
tion, all depend on the relative frequency of
outcomes other than the one observed, for exam-
ple. outcomes as or more statistically significant—
the ““tail area.” This remains a pivot point around
which controversy in philosophy of statistics
revolves. It is not a matter of one side being right
and the other wrong, it is a matter of holding
different aims, which in turn grow out of different
philosophies of statistics.

The Significance Testing Controversy

Morrison and Henkel (1970) stands as a hallmark
to the foundational issues wrestled with by social
and behavioral scientists of this period. Where
philosophers directed most of their criticisms to
N-P tests, the focus here tended to center on simple
Fisherian significance tests that had been widely
adopted in psychology and other social sciences.
Chastising social scientists for applying significance
tests in slavish and unthinking ways, contributors
call attention to a cluster of pitfalls and fallacies of
testing. These fallacies are at the center of the
philosophical controversies in this and later waves:

(1) Large N Problem: With large enough sample
size. an o significant rejection of Hy can be



very probable, even if' the underlying dis-
crepancy from g, i1s substantively trivial, In
lact. for any diserepancy from the null, how-
ever small, one can [ind a sample size such
that there is a high probability (as high as
one likes) that the test will vield a statistical-
ly significant result (for any p-value one
wishes). Nevertheless, as Rosenthal and
Gaito (1963) document, statistical signifi-
cance at a given level is often (fallaciously)
taken as more evidence against the null the
larger the sample size (7). In fact. it s indic-
ative of fess of a discrepancy from the null
than il it resulted from a smaller sample size.
The “large n problem™ is also the basis
for the “Jeffrey-Good-Lindley” paradox
brought out by Bayesians: even a highly sta-
tistically significant result can, as n is made
sufficiently large, correspond to a high pos-
terior probability accorded to a null hy-
pothesis (see Bayesianism). Some suggest
adjusting the significance level as a function
of n. others. mtroducing some measure of
the size of the discrepancy or “effect size”
indicated. These issues return in the third
wave.

(i1) Fallacy of Non-Statistically — Sienificani
Resulrs: Test T(x) fails to reject the null,
when the test statistic fails to reach the cut-
off point for rejection, that is, d(xy) < c,. A
classic fallacy is to construe such a “‘nega-
tive” result as evidence of the correctness of
the null hypothesis. The problem is that
merely surviving the statistical test is too
easy. occurs too [requently, even when the
null is false. One can always find a sufficient-
ly small discrepancy ¢ from the null such
that the test has low power to detect it.
Thus. it would be fallacious to regard insig-
nificant results as evidence that the discrep-
ancy is less than d, much less that there is no
discrepancy at all. With publishers demand-
ing at least a .03 significant result for publi-
cation, many of these studies remain tucked
away, the so-called “file-drawer problem”
(Meehl 1990),

The Power Analytic Movement of the 1960s

In their attempt to inculcate the calculation of
power in psychology Cohen (1988) and others
began, in the 1960s, the “power analytic” move-
ment. The attention to power, of course, was a key
feature of N-P tests, but apparently the prevalence
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of Fisherian tests in the social sciences, coupled,
perhaps. with the difficulty in calculating power.
resulted in power receiving short shrift.

Although this was less well advertised, the power
analysts used power not only for planning but for
interpreting nonsignificant results post-data: If a
non-statistically significant result occurred with a
test with low power to detect discrepancies of in-
terest, the power analysts urged, then such a non-
significant result should not be taken to rule out
such departures from the null. In so doing, one is
codilying a means to avoid the fallacy of taking
“no evidence against”™ the null as “evidence for”
the null.

It may be surprising to include Neyman. but one
finds just such a post-data use of power in the
occasional papers of Neyman in the 1950s. In
one. Neyman addresses Carnapian confirmation:
“In some sections of scientific literature the pre-
vailing attitude is to consider that once a test,
deemed to be reliable, fails to reject the hypothesis
tested. then this means that the hypothesis is
“confirmed™. Calling this “a little rash™ and “dan-
gerous.” he claims “a more cautious attitude would
be to form one’s intuitive opinion only after study-
ing the power function of the test applied”
(Neyman 1935, 41).

One 1s advised to consider: (i) how large a dis-
crepancy {rom the null is considered “important™
or non-trivial on substantive grounds (to be deter-
mined by the tester) d,pnrivia. and (ii) the power
of detecting a dyoniriviat With the test actually
used, for example, Power(7(2),0 ontrivia). 1f the
power is low, “the fact that the test failed to detect
the existence of ¢ “does not mean very much. In
fact, [Ohonuivial] May exist and have gone undetect-
ed” Neyman (1957b, 16). So here in Neyman are
the basic outlines of the post-data “power analytic™
movement, admittedly, largely lost in the standard
decision-behavior model of tests.

However, even the post-data use of power
retains an unacceptable coarseness: power is always
calculated relative to the cutoff point ¢ for reject-
ing Hy. Consider test T(x = .025), ¢ = 1, n = 25,
and suppose dpan-rivial = -2 15 deemed “substantive-
ly important™. To determine if ““it is a little rash™ to
take a nonsignificant result, say d(x) = —.2, as
reasonable evidence that é < dponuivia (1.6, an im-
portant discrepancy is absent), one is to calculate
POW(T (% = .025), dnonuivial) Which is only .16! But
why treat the particular non-significant result the
same no matter how close it is to g (i.e., 0)? In lact
P(d(x) > —.2; .2) = 93. That is, were u as large
as .2, the test very probably would have detected
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a more significant result. This suggests that rather
than calculating

Pld(X) > c,op = .2), (A)
one should calculate

(BIP(d(X) > d(Xp): 0 = .2). (B)

Even if (A) is low, (B) may be high. Whether
Neyman and Pearson did or would have endorsed
this modification of the pre-data error probabilities
is an open question. The issue reappears in the
“reforms’ of the third wave.

The Third Wave: Relativism, Reforms,
Reconciliations

Statistics in Meta-Methodology

In the 1980s and 1990s statistical inference
began to figure in rational reconstructions of scien-
tific episodes, in appraising methodological rules
e.g., the value of novel evidence, the prediction
versus accommodation debate (e.g., Howson and
Urbach 1989; Glymour 1980; Mayo 1991) and
in attempts to solve classic philosophical prob-
lems. such as Duhem’s problem (Howson and
Urbach 1989). The recognition that science in gen-
eral. and statistical inference in particular, involves
subjective judgments and values. the statistical
method, most often appealed to here is largely
one or another subjective Bayesian account. One
can explain historical cases wherein anomalies are
blamed on background rather than a hypothesis H.
some argue, by showing how plausible prior beliefs
could stll permit # to have a reasonably high
posterior degree of belief. Others charge that the
very flexibility Bayes's theorem offers in recon-
structing cases as rational is to sidestep the ques-
tion at hand: Which hypothesis ought to be blamed
for an anomaly? (Mayo 1997; Worrall 1993).

Bayesian Advances and Controversy

The heat of the old debates is less in evidence
in the third wave. For the most part statisticians
are comfortable with an eclecticism. wherein differ-
ent methods may be suitable for different functions.
for example “pure™ (Fisherian) tests in some cases,
N-P “decision procedures” in others, along with
good-sense. informal recommendations for their
interpretation. To others, particularly nonstatisti-
cian practitioners (e.g.. in psychology, ecology.
medicine), the situation seems less one of joyful
cclecticism, and more one of “unholy hybrids”
yielding a mixture of ideas from N-P methods,
Fisherian tests, and Bayesian accounts that is
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“inconsistent from both perspectives and burdened
with conceptual confusion™ (Gigerenzer 1993, 323).
Because increasingly philosophers of science come
to these issues by way of subject matter fields, they
are more likely to be users of the latest methods
rather than occupy their historical role as outside
critic,

The use of Bayesian methods has grown expo-
nentially both because of the philosophical prob-
lems with error statistical methods as well as the
development of effective computational tools such
as a Markov Chain Monte Carlo (MCMC). The
rise in statistical computer packages means that
Bayesian and non-Bayesian methods are readily
available, encouraging the practitioner to view
them as simply enriching the statistical toolkit
rather than as reflecting different perspectives on
philosophical foundations. In this sense the use of
high-powered statistical tools increases the distance
between the use and philosophical foundations of
the methods. But when competing interpretations
arise, as they often do, the philosophical questions
from the first and second waves re-emerge. Most
especially are debates about the role and justifica-
tion of Bayesian prior probabilities. Operating with
mathematically convenient priors is common bul.
as Bayesians are well aware, more is needed to
justify them. One important argument put forward
shows that with sufficient data, posterior probabil-
ities will converge even if they are based on differ-
enl priors (see Bayesianism). As Kyburg (1993,
146) shows. however, for any body of data there
are non-extreme prior probabilities that will result
in posteriors that differ by as much as one wants.

A related argument defending the use of priors
shows that it is possible to ascertain the influence
different priors may have, and so long as the pos-
terior remains relatively insensitive the Bayesian
inference is robust to the prior. A question that
arises is this: if when the choice of prior is found
to matter one must seek a different procedure, and
if there are sufficient data such that the choice of
prior scarcely matters. then why is the prior rele-
vant at all? Does not this revert to the goal that
drove Neyman, namely, to find procedures whose
validity does not depend on the priors? The appeal
of error statistical methods, despite problems, is
that they apply for the kinds of uncertain cases
scientists often face. Granted it is appealing to
enlist the beliefs of “experts.” but the question is
how to retain the ability to critique and hold them
accountable—a growing concern in evidence-based
policy. Error probabilities can be calibrated against
empirical frequencies, but can one equally well
calibrate the opinion of the experts?



Reforms Within Evror Statistics

There is an extensive movement to retain error
statistical tools and yet reform them in order to
avoid the well-known fallacies and shortcomings.
The significance test fails to convey the effect of
discrepancy warranted, and thus many journals
require they be supplemented with measures of
effect size. The most fruitful idea seems to be to
appeal to two sided CI estimation procedures, even
in interpreting the one-sided test T(x).

Consider interpreting non-significant results,
Since all elements of the CI “fit” or are consistent
with the outcome at the given level, the interpreter
is deterred from thinking there is evidence for 0.
But, as critics note, this will not go far enough to
block fallacies of acceptance in general. For exam-
ple, the (1 — 2) CI for the parameter u in test T(x)
with « = .025 is: [x —1.96(ay/n),x1.96(a\/n)]
o= 1.n=25(oyn) =.2. Outcome ¥=.39 just
fails to reject H, at the .025 level. and correspond-
ingly 0 is included in the two-sided 95% interval:
(—.002 < < .782) (see duality between tests and
Cls. above). Consider now the inference u < yu; for
Jju within the CIsay, p < 0.2. The hypothesis u < 0.2
is non-rejectable by the test—it is a survivor, as it
were, But the construal is dichotomous: In or out.
plausible or not: all values within the interval are on
par, as it were (Mayo 1996). This does not adequate-
Iy prevent fallacious interpretations ol non-signifi-
cance (fallacies of acceptance). Although X is not
sulficiently greater (or less) than any of the i values
in the confidence interval to reject them at the
x-level, this does not imply there is evidence for each
of the values in the interval (Mayo and Spanos 2005),

Severity Assessments

The power analyst would seem to do better
here. For each value of y, in the confidence inter-
val. there would be a different answer to the ques-
tion: What is the power of the test against 1?7 Thus
the power analyst makes distinctions that the CI
interval theorist does not. The power analyst
blocks the inference p < 0.2 since POW(T(«
025). .2) 1s low (.16). But, as seen in the second
wave, there is an important weakness of the use of
power to avoid fallacies of acceptance. Were the
result not x = .39, but rather x = —.2, the test
again fails to reject Hy, but the power analyst,
looking just at ¢, = 1.96 1s led to the same assess-
ment denying there is evidence for u < 0.2. (power
analysts commonly recommend a power of .8 as
high). Although the “prespecified” power is low.
16, it seems clear that the interpretation, post-data,
should reflect the actual outcome. and there is a
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high probability for a more signilicant result than
the one attained. were g as greal as 0.2! Rather
than construe “a miss as good as a mile.” parity
of logic suggests that the post-data power assess-
ment should replace the usual calculation of power
against :

BOW(T (), 0n) = Pla(X) >Capo=41];

with what might be called the power acrually
aftained or, to have a distinct term, the severity
(SE¥):

SEV(T(a), ) = P(d(X) > d(xa); = py),

where d(v) is the observed (nonstatistically signili-
cant) result (Mayo and Cox 2005). SEV(T(x). d(xg).
1< 1) is a shorthand for “the severity of the test
which p <y has passed on the basis of the insig-
nificant result d(xy) from test T(x).” This is the
post-data measure of a test’s severity for detecting
discrepancies as large as y = p;, — py. Since T(x)’s
probativeness would be even higher for greater
values of g, it follows that SEV(T(2), 1 < p;) =
P(d(X) > d(xp): 4 = ;) Mayo and Spanos 2003).
The philosophical position here 1s that error prob-
abilities serve a function in a post-data interpretation
of statistical inferences, by characterizing the proba-
tiveness of the particular test result with respect to a
particular interpretation or particular inference on
may wish to consider: Pre-data, one is balancing
the two types of errors; but post-data, the concern
shilts to evaluating if particular inferences are
warranted. Figure | compares power and severity,
Conversely, for any non-significant result from
test T(z), one may find the value of u against which
the test has high severity, say .975. This is solved by
1 =X+ 1.960,, which is noticed to be the same
value as the upper bound of a two-sided .95 level
CI, u. However, unlike the use of Cls, the severity
analysis discriminate between inferences p < i, for
different values of y; within the interval. The com-
putations related to delineating a series of observed
Clsat different levels can be found in Kempthorne's
“consonance intervals” (Kempthorne and Folks,
1971) and ““confidence curves,” “p-value functions”
(Birnbaum 1961: Poole 1987). These strategies are
motivated by the desire to move away from (i)
having to choose a particular confidence level
(or corresponding p-value), (ii) the dichotomous,
“up”/“down’ interpretations of tests. There would
appear to be an important difference with these
approaches, at least in emphasis. If one is thinking
of values “consistent”™ with the observed data x;.
then a value u' near the center of the CI is more in
accord with xg than is ¢ near the upper CI bound;
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however the inference y < y”” has passed a more
probative test than has g < /.

Fallacies of Rejection: The Large n Problem

While with a nonsignificanr result, the concern
is erroneously inferring that a discrepancy from
Lo 18 absent; with a significant result xp, the concern
is erroneously inferring that it is present. Rejection
need not be discussed separately here (see Mayo
1996), since for any H: Sev(—H ) = 1 — Sev(H),
it follows for the particular case of Hy: u > u,
Sev (i > 1) =1 — Sev (u < py) = 1— (actual
power at (u = ().

The “large n”" problem already made its splash in
the second wave: With large enough sample size, an
2 significant rejection of Hy can be very probable
for any discrepancy =« from w. even if it is substan-
tively trivial. Utilizing the severity assessment, an
o-significant difference with n, passes p > u; less
severely than with n, where n; > n-.

Figure 2 compares test T(x) with three different
sample sizes: n = 25, n = 100, n = 400, denoted by
T(a. n); where in each case d(xp) = 1.96 — reject at
the cutofT point.

More generally, if two (otherwise identical) tests
with different sample sizes give rise o rejections of
Hyy at the same p-value. the result from the smaller
sample experiment indicates a greater extent of a
discrepancy from H, than from the larger. This
immediately scotches the “large n problem,” and
simultaneously provides a way to supply p-values
with assessments ol population discrepancy (or
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effect size) that can be compared across different
Lests.

P-values and Bayesian Posteriors

Severity is an error probability calculation
based on the actual data (and inference of interest)
but it must be distinguished from what has some-
times been called the conditional “*error probabili-
ty” understood as a posterior probability. The
most well-known fallacy in interpreting signifi-
cance tests is to equate the p-value with a posterior
probability on the null hypothesis. The p-value
assessment refers only to the sampling distribution
ol the test statistic ¢(X); and there is no use of
priors. The Jeffrey-Good-Lindley “paradoxical”
examples (see above) shows that attaining a fixed
p-value, with a sufficiently large n, can correspond
to large posterior probabilities for /. More recent
work generalizes the result (Berger and Sellke
1987). Although from the degree-of-confirmation
perspective, it follows that p-values come up short
as a measure of evidence, the significance testers
balk at the fact that use of the recommended priors
can result in highly significant results being con-
strued as no evidence against the null—or even
evidence for it! An interesting twist in recent work
is to try to “reconcile” the p-value and the posterior
(e.g., Berger 2003).

The conflict between p-values and Bayesian pos-
teriors often considers the familiar example of the
two-sided T(2x)test. Hy: = p, versus Hy:p # uy.
The difference between p-values and posteriors



STATISTICS. PHILOSOPHY OF

1.00 T —
0.95 |
0.90 |
0.85 |
0.80 |
0.75 |
0.70 |
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25 -
0.20 |
0.15 |
0.10 |
0.05 |
0.00

Severity

L L i L

0.25 0.35

Fig. 2. Intest T(x). (Hy : p < 0 against H,
i

d(xy) = 1.96. Inference under evaluation:

0.45

055 065 075 085 095

Discrepancy

ca>0and o = 1), 2 = .025,¢, = 1.96 and

0> 0.1 SEV(T(2,25), p = 0.1) = 93: SEV(T (2, 100), p = 0.1) = .83; SEV(T(.400), 0 = 0.1} = .5

are far less marked with one-sided tests (c.g.,
Pratt 1977). “If n = 50 one can classically ‘reject
Hy at significance level p = .05, although P(Hgl|x)
= .52 (which would actually indicate that the evi-
dence favors H,)" (Berger and Sellke 1987, 113,
replace Pr with P for consistency). Thus, data
that the significance tester would regard as evi-
dence against Hy. would. on the Bavesian construal
being advocated actually indicate that the evidence
favors Hy. If n = 1000, a result statistically signifi-
cant at the .05 level leads to a posterior to the null
of 82!

What makes the example so compelling to many
is its use of an “impartial” or “uninformative”
Bayesian prior probability assignment of .5 to H,
the remaining .5 probability being spread out over
the alternative parameter space, e.g., as recom-
mended by Jeffreys (1939). Others charge that the
problem is not p-values but the high prior. More-
over, the “spiked concentration of beliel in the null™
is at odds with the prevailing view “we know all
nulls are false.” Note too the conflict with CI
reasoning since 0 is outside the corresponding CI.

Some examples strive to keep within the
frequentist camp: to construe a hypothesis as a
random variable, it is imagined that there is ran-
dom sampling from a population of hypotheses,
some proportion of which are assumed to be true.
The percentage “initially true™ serves as the prior
probability for H,. This gambit is common across
all philosophy of statistics literature, and yet it
commits a fallacious instantiation of probabilities:

50% of the null hypotheses in a given pool of
nulls are true. This particular null hypothesis
Hyy was randomly selected from this pool.
Therefore P(H, is true) = .5.

Faced with conflicts between error probabilities
and Bayesian posterior probabilities, the error prob-
abilist would conclude that the flaw lies with the
latter measure. This is precisely what Fisher argued.
and it seems fitting to end up this retrospective
with a return to him.

Discussing a test of the hypothesis that the stars
are distributed at random, Fisher takes the low p-
value (about 1 in 33.000) to “exclude at a high
level of significance any theory involving a ran-
dom distribution™ (Fisher 1956, 42). Even if one
were to imagine that H; had an extremely high
prior probability,” Fisher continues-—never mind-
ing “what such a statement of probability a priori
could possibly mean”—the resulting high poster-
iori probability to H,, he thinks, would only
show that “reluctance to accept a hypothesis
strongly contradicted by a test of significance”
(ibid, 44) “'is not capable of [inding expression in
any calculation of probability a posteriori’ (ibid,
43). It is important too to recognize that sampling
theorists do not deny there is ever a legitimate
frequentist prior probability distribution for a sta-
tistical hypothesis: one may consider hypotheses
about such distributions and subject them to pro-
bative tests. Indeed, if one were to consider the
claim about the a priori probability to be itsell a
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hypothesis. Fisher suggests, it would be rejected
by the data!

Concluding Comment

Underlying the central points of controversy in the
three waves of philosophy of statistics lie two con-
trasting philosophies of the role of probability in
statistical inference. In one tradition, probability
is used to provide a post-data assignment of degree
of probability. confirmation. support or belief in a
hypothesis (e.g.. Bayesian and likelihood accounts):
while in a second, probability is used to assess the
probativeness, reliability, trustworthiness, or sever-
ity of a test or inference procedure (e.g., significance
tests, N-P tests, CI). This basic contrast in underly-
ing aims corresponds to conflicting principles for
appraising methods: satisfying the likelihood prin-
ciple, as opposed to controlling error probabilities.
Whether statistical methodology should be regar-
ded as supplyving different tools depending on the
task at hand. or whether the different methods can
or should be reconciled in some way, are likely to
remain questions of debate for a good while longer.

Desoran G. MaYO

The author acknowledges the helpful input of Aris
Spanos and D. R. Cox.
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sion Theory; Probability

STATISTICAL MECHANICS

See Kinetic Theory

STRONG PROGRAM

See Social Constructionism

SUPERVENIENCE

The term ‘supervenience,” as appropriated by the
philosophical community, denotes a relation be-
tween two families of properties. Roughly stated,
the A-properties supervene on the B-properties just
in case there can be no difference in A-properties
without some difference in B-properties. Equiva-
lently. if two things are exactly alike in B-properties.
they must be exactly alike in 4-properties.

A simple and uncontroversial example of super-
venience may help fix ideas: the case of aesthetic
and nonaesthetic properties, If any two objects are
exactly alike with regard to their nonaesthetic
properties, they must be exactly alike with regard
to their aesthetic properties; indiscernibility in
nonaesthetic properties requires indiscernibility
in aesthetic properties. Other normative properties
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