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SUMMARY 
A simple model is used to investigate the relevance of ‘competence’ to active control equivalence studies 
(ACES). It is shown that to the extent that such trials are successful the results of such trials must raise 
doubts regarding their competence. ACES are thus more problematic than classical clinical trials and the 
problems with such studies cannot be solved simply by exchanging the usual roles of null and alternative 
hypotheses. 

INTRODUCTION 

For conditions for which there is a treatment which is at least partially effective it may be 
unethical to run clinical trials in which patients are given a placebo. On the other hand it may be 
unreasonable to expect that every addition to the therapeutic armoury should prove itself 
superior (on average) to an existing treatment. A new treatment which, were it the only one 
available, would be no better than the existing standard, may nevertheless be useful because it 
may be the case that some patients who are resistant to treatment with the standard treatment, or 
who cannot tolerate it, will benefit from taking the new treatment. Of course conversely some 
patients may benefit from the standard therapy who do not from the new treatment, for if this is 
not the case the new treatment will indeed be superior to the old. Under such circumstances 
patient choice is increased by the availability of the new therapy. 

Makuch and Johnson’ have proposed the designation active control equivalence study (ACES) 
for a type of study which they have described as follows: ‘Rather than being oriented towards 
detecting a significant difference between two treatments, these new trials are directed toward 
showing that an experimental treatment is ‘equivalent’ in efficacy to a standard therapy’ (p. 503). 
The justification for running such trials is perhaps in terms of the practical considerations given 
above. Nevertheless, it is now generally recognized that such trials pose considerable problems in 
interpretation and that these problems are not merely ~ ta t i s t ica l .~ .~  For example, such trials can 
never be truly blind to the same degree as trials designed to prove superiority, since it is not 
necessary to know the treatment code in order to bias data towards eq~ivalence.~ This is not an 
argument against blinding such trials, since, even in a study designed to prove equivalence, 
a difference may nonetheless be demonstrated and under such circumstances it would be useful to 
be reassured that this could not be due to bias. 

* Presented at the Society for Clinical Trials/lnternational Society for Clinical Biostatistics Joint Meeting, Brussels, 
Belgium, July 1991. 
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In this note, which is a companion paper to one previously published in Statistics in M e d i ~ i n e , ~  
a simple probabilistic model will be developed to examine the problem of ACES in terms of the 
notions of fairness and competence. It is not claimed, however, that the treatment of the problem 
here is in anyway definitive and one of the main objectives of the paper is to  encourage others to 
take up the challenge of discussing the problem of equivalence in more formal terms. 

FAIRNESS AND COMPETENCE 

An experiment comparing two treatments will be designated ‘fair’ if it accords the treatments 
equal status and deals with them even-handedly. To be fair it should be as nearly as possible 
symmetrical in all aspects except one: the treatments themselves. If the experiment itself cannot be 
perfectly fair with regard to allocation of subjects to treatments it should use a method of analysis, 
for example analysis of covariance, which makes such imbalance irrelevant. Willingness to 
randomize can be regarded as a declaration of fair intention on the part of the investigator. 
Fairness is determined on external grounds: it has nothing to do with the results. We cannot 
decide that the trial was blind or randomized by looking at the outcomes. We might, of course, for 
a trial in which deception had been practised clumsily, obtain evidence that the trial had not 
been randomized or blinded. On the whole, however, fairness is an issue of scientific 
trustworthiness. 

Competence, on the other hand, can only be partially determined at best on external grounds: 
its most convincing demonstration is internal. A competent trial is a trial which can detect 
a difference between treatments where it exists but we can never be certain as to what it would 
take to determine such a difference. The investigator may study previous trials in the same or 
similar indications with similar treatments in order to determine what features he ought to 
incorporate into his study, but however diligently he does this he may not succeed in identifying 
all features which are necessary to his study. It may require, for example, that the subjects be 
possessed of some hidden or unknown quality in whose presence the treatments, although 
otherwise similar, behave differently. For example the standard treatment may be effective for 
many patients but scarcely at all for those enrolled in the trial because they are genetically 
unsuitable. Since clinical trial protocols scarcely specify the rule by which patients will be chosen 
for entry to the trial but simply, via inclusion criteria, the means by which they may be chosen, it 
will usually be difficult to assess the probability that patients treated do not differ from those in 
whom the drug was developed in some essential but unmeasured respect. Or it may be that the 
new treatment is highly toxic if used with a given concomitant treatment but that the trial 
protocol excludes such treatment. 

There is, however, one circumstance under which we can assume a trial is competent to find 
a difference and that is if it finds one. This is thus the paradox of the ACES: if the stated object of 
the trial protocol of proving equivalence is achieved we have no proof that it was competent. If we 
have proof of its competence then the trial will not have demonstrated equivalence. 

This problem will be investigated in terms of a simple (semi-Bayesian) model below. 

A SIMPLE MODEL 

Consider an ACES with two treatments. Let C stand for the condition that the trial is competent 
to find a difference between treatments given that they are not equivalent, and C‘ for the 
condition that it is not; and let E stand for the condition that two treatments are equal, and E‘ for 
the condition that they are not. Now suppose that only two outcomes are possible: D and D’. In 
terms of standard statistical conventions, D and D’ might be observable values of a statistic 
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(although a rather unusual one) whereas E and E’ and C and C’ correspond to values of 
unobservable parameters. 

The conjunction of two conditions is represented as a product. Thus ( E ’  C )  is the combination 
corresponding to a competent trial in two treatments which are not equivalent. 

The various likelihoods are as follows: 

Note that under this formulation of the likelihoods it is irrelevant as to whether the trial is 
competent or not given that the treatments are equivalent, because given that the treatments are 
equivalent the likelihoods are identical whether or not the trial is competent. Alternatively, we 
could regard the combination EC as impossible. Whether we do so or not is partly a matter of 
convention and depends on whether or not we regard the non-equivalence of the treatments as 
being part of the essence of competence itself. We shall take up this point again below. 

Note also that we require n > 8 because otherwise an incompetent experiment is at least as 
competent as a competent experiment, but this requirement is merely a linguistic one and might 
easily be relaxed to allow 6’ > n since all that happens in that case is that C and C‘ change roles. 
However, to have a problem worth investigating we require that n # 8. 

Now, suppose that the trialist assigns himself a prior probability that the treatments are 
equivalent, P ( E )  = 8, and that the trial is competent given that the treatments are not equivalent, 
P(C1E’)  = a. Given the formulation of the likelihoods above, the value of P(CIE)  need not be 
considered. We might logically regard this as being equal to zero but any value at all will give the 
same result. 

The model is, of course, rather crude, being expressed in terms of dichotomies. For example 
competence might be a matter of degree rather than kind and 8 might be allowed to vary between 
n (extreme competence) and 4 (extreme incompetence) according to some prior distribution. We 
shall consider some of the difficulties associated with the crudeness of the model in the discussion 
at the end, but for the moment consider the consequences of the model as it stands. 

Given the likelihoods and prior probabilities, we may calculate: 

P ( D E ‘ )  = P ( D E ’ C )  + P(DE’  C’)  = P ( E ’ )  (CIE’ )P(DIE’C)  + P(E’ )P(C’IE’ )P(DIE’C’ )  

= (1 - p) [an + (1 - a)8] 

P ( D E )  = P ( D E C )  + P ( D E C ’ )  = /94 
P ( D ’ E )  = P ( D ’ E C )  + P(D’EC’)  = p(1 - 4) 

P ( D ’ E ’ )  = P ( D ‘ E ’ C )  + P ( D ‘ E ’ c ’ )  = a(i - p)(i - .) + (I  - a)(i  - p)(i - el. 
Use of Bayes’ theorem then yields a posterior probability of the non-equivalence of the treatments 
given that D is observed: 
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On the other hand, given that D’ is observed the posterior probability of equivalence is given by 

(3) 

Finally, we might also be interested in the posterior probability of the trial being competent given 
that the treatments are not equivalent but given that we have observed D’. For this we may note 
that P[(CJE’)ID’] = P(CE’ID’)/P(E’JD’) and that P(E’1D’)  = 1 - P(EJD’). 

P(1  - 4 )  P(E1D’) = 
a(i  - p)(i - n) + (1 - U)( i  - p)(i  - e )  + b(i - 4 ) ’  

Now since 

we have 

It may be queried as to why we are interested in the condition CI E‘ rather than simply C.  There 
are at  least two reasons. First, by concentrating on CIE’ we avoid a difficulty, namely that of 
having to consider what we mean by a trial which is competent to find non-equivalence where in 
fact equivalence obtains. Second, it may be argued that the competence of the trial only affects the 
observed result if the treatments are in fact non-equivalent, a feature which is reflected in the 
formulation of the likelihoods. 

CONSIDERATION OF THESE RESULTS 

Suppose that, in violation of assumption (l), % = n, which would imply that all experiments were 
competent. We ought to find, therefore, that the value of o! would be irrelevant. This does, in fact, 
turn out to be the case, for substitution of n for 8 in (2) and (3) yields 

These are, of course, the familiar expressions for posterior probabilities in cases where the 
competence of experiments is taken for granted, and they may be obtained equivalently by 
substituting a = 1 in (2) and (3). 

I shall assume, however, that % is not in general equal to n, and in particular that although 
n may be arbitrarily increased and 4 decreased by designing better and better experiments, the 
joint effect of a and 8 represents a hidden element in any experiment which is beyond the 
experimenter’s ability to control. Consider, therefore, what happens to (2) and (3) when n + 1 and 
$ + 0. Under such circumstances we find that 

P ( E ’ I D ) +  1 
but that 
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We thus see that there is an asymmetry in refuting the hypothesis of equality of treatments and 
failing to do so. 

Matters may be taken a little further, however, since it is not clear where knowledge of a might 
come from. Suppose that 8 = 0 and a = 0: then substitution into (9) yields b as the limit of 
P(E1D’). Now we might argue that this is to be unduly pessimistic about a. Surely our experience 
can allow us to give a higher value than 0 to a? Consider, however, what experience in this 
experiment tells us about a. 

Suppose we define the support given for the competence of the experiment given that the 
treatments are not equal but that no difference is observed, S[(CIE’)ID’], as the difference 
between the posterior and prior conditional probabilities of competence. Thus 

SC(ClE’)lD’l = PC(ClE’)ID’I - PC(CIE‘)I 3 

from which 

(10) 
a(1 - 71) 

a(i - n) + (1 - a)(i - e) 
- a(1 - a)(n - 8) 

a(1 - n) + (1 - a)(l - 8)’ 
S[(CIE’)ID’] = - a =  

Now, it will be seen that, except where a = 1 (which implies that all experiments are competent 
given non-equivalence of the treatments) or where 8 2 n, relation (10) is negative; and in fact, as 
n + 1, (10) + - a and hence (5) + 0. There thus can be no support from this experiment for the 
value of a unless we succeed in proving that the treatments are not equivalent. The more we 
appear to have proved the equivalence of the treatments, the more we ought to doubt the 
competence of our experiment. 

Graphical illustrations of some examples of these results are given in Figures 1 to 3. 
Figure 1 shows the posterior probability of non-equivalence given an observed difference for two 
values of a: a = 1 corresponding to a trial for which, a priori, competence may be assumed with 
absolute confidence; and a = 0.5 for a trial in which the competence is in some doubt. The value 
of 4 has been set to 0.05, corresponding to the common value used in tests of significance (but see 
discussion below) and 8 has also been set to 0-05. Given the value of 4, this corresponds to 
extreme incompetence. The prior probability of equivalence, p, has been set to 0-5. The posterior 
probability of E’ is plotted as a function of n. As n increases, this posterior probability approaches 
0.952 for the case of a = 1 and 0.913 for the case of a = 0.5. Clearly, for this example, the prior 
competence or otherwise of the experiment has little effect on the interpretation. To increase the 
posterior probability of non-equivalence beyond these limits we need to have trials in which 4 is 
decreased. 

Figure 2 shows a plot of the posterior probability of equivalence given an observed lack of 
difference for 4 = 8 = 0.05, b = 0.5 and a = 1 against n. As n increases the posterior probability 
approaches 1. Figure 3 on the other hand considers an identical setting of parameters to Figure 
2 except that a = 05.  Here, as n increases the posterior probability of equivalence approaches 2/3. 
In this case decreasing 4 will not improve matters if the consequence of this is that 8 decreases 
also. Also illustrated in Figure 3 is the posterior probability of competence given an observed lack 
of difference and given genuine difference between treatments as a function of n. It will be seen 
that as n approaches 1 this declines to 0. 

DISCUSSION 

Some caution is indicated in interpreting these results. The results show an asymmetry between 
equivalence and non-equivalence in clinical trials. To a certain extent, however, this asymmetry is 
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phi=theta=0.05 
prior beta.0.5 

Figure 1. Posterior probabilities of non-equivalence given an observed difference 

built into the formulation which takes it for granted that the purpose of a clinical trial is to show 
that at least some patients benefit from treatment - not that all will. If it were to be regarded as 
being the object of a clinical trial to prove that all patients, or even all patients of a given type, 
benefited from a given treatment (even if benefit were only measured in terms of a probability of 
being cured), then the issue of competence would be one which would also affect trials in which 
demonstrated superiority of one treatment to another were the outcome. One might, for example, 
then ask whether the patients in the trial were essentially similar to future patients on whom the 
successful treatment would be used. This is then a ‘competence’ issue of sorts. 

I have argued elsewhere that clinical trials require a ‘falsificationist’ view? that they are means 
by which statements of the sort ‘the treatments are always equal’ may be shown to be false. To 
demonstrate that such a statement is false it is sufficient to show that it is not true for a given 
group of patients. To go further than this and suggest that the treatments are unequal for other 
patients requires a means of establishing a general pattern from particular instances, a process 
which is known in philosophy as ‘induction’. 

It should also be noted that although a ‘falsificationist’ view of clinical trials would also 
superficially appear to be more in tune with frequentist methods than with Bayesian ones, the 
model shows some problems with the frequentist formulation where an alternative hypothesis 
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Figure 2. Posterior probability of equivalence given a lack of observed difference 

exists. In the discussion of Figure 1, for example, it was noted that the posterior probability of 
non-equivalence given an observed difference could only be increased beyond a certain limit by 
reducing (6. Now if the event D were ‘significant difference’ and the event D’ were ‘non-significant 
difference’ then 4 and might correspond to size and power in a Neyman-Pearson formulation. 
This would show that, given a large number of patients, we should eventually be better off 
reducing the nominal size of our test rather than continuing to increase power, a result which is 
related to the Lindley para do^.^ It must also be pointed out that we have avoided some of the 
difficulties which the famous paradox poses for frequentist methods by only allowing ourselves to 
observe a simple dichotomy D or D’. Where we carry out a test of significance we replace an 
observed statistic capable of taking on many values by a label ‘significant’ or ‘not-significant’, and 
this is not a legitimate summary of the evidence where a null hypothesis is being tested against 
a fixed alternative or even a well defined class of alternatives. 

It must also be conceded that specification of such alternatives is an essential part of the 
Neyman-Pearson approach, and also, in a sense, of Bayesian approaches. The Fisher significance 
test does not involve an alternative hypothesis and, indeed, Fisher regarded test statistics as 
having logical priority to alternative hypotheses and not vice versa as is the case in the 
Neyman-Pearson theory (Reference 6, p. 246). Lindley showed, however, that even very weak 
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Figure 3. Posterior probabilities given a lack of observed difference 

theories about alternatives could cause problems for the significance test,5 although his own 
formulation of the alternative hypothesis rather disguises the fact that different alternative 
theories will produce very different results. Johnstone7 provides an interesting account of the 
standard Bayesian criticisms and Barnard’ provides a defence of Fisher. 

Two aspects of the model presented are, perhaps, worthy of attention. First, Fisher (Refer- 
ence 9, p. 45) considered that ‘A test of significance contains no criterion for “accepting” 
a hypothesis’ (by hypothesis he meant a true null hypothesis, which in this context would be the 
hypothesis of equality) and this at least implies that within his system of statistics, a demonstra- 
tion of equivalence cannot be handled in the same way as a ‘proof’ of a difference. Some have seen 
this as a weakness. Most modern Bayesian formulations do  not recognize such a distinction; 
nor - although it is a point which many commentators, including at least one famous Bayesian 
(Reference 10, p. 181), seem to have missed - does the Neyman-Pearson formulation. Provided 
that the ‘null’ hypothesis is declared to be the hypothesis that the treatments differ by at least 
some amount, then a Neyman-Pearson decision rule may (in certain circumstances) be con- 
structed which allows, given a suitable value of the test statistic, the acceptance of the alternative 
hypothesis of equivalence. The model above suggests, however, that there may be some merit in 
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recognizing a fundamental difference between equivalence and not-equivalence and it may be that 
the fact that the Fisherian approach does so is a strength not a weakness. 

The second point of interest is that the model may illustrate a phenomenon explicitly drawn 
attention to by Popper and Miller.” They have investigated the nature of probabilistic support 
and come to the following conclusion: ‘Although evidence may raise the probability of a hypoth- 
esis above the value it achieves on background knowledge alone, every such increase in 
probability has to be attributed entirely to the deductive connections that exist between the 
hypothesis and the evidence’ (p. 569, original italics). In their view any inductive ‘support’ is 
countersupport. 

The results above show at least a superficial parallel to these findings; for, given an assumption 
concerning a and the other assumptions implicit in the formulation above, deductive support may 
be produced for the theory of equivalence. To the extent, however, that the equivalence of 
treatments under this assumption is supported by the evidence, the assumption itself regarding 
a can only be countersupported. The support offered by d’ to the hypothesis of equivalence is 
genuine, deductive but entirely conditional, whereas the support offered by d to  the hypothesis of 
non-equivalence is genuine, deductive and unconditional. These two forms of support, therefore, 
take place on entirely different levels. 

If this interpretation is accepted, then the result which follows is what is offered as the major 
conclusion of this paper: there is a fundamental logical difference between concluding, as a result 
of running a clinical trial, that the effects of treatments are different, and concluding that they are 
the same. My own view is that no amount of mathematical juggling can remove this distinction. 
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