Raise standards for preclinical cancer research

C. Glenn Begley and Lee M. Ellis propose how methods, publications and incentives must change if patients are to benefit.

Efforts over the past decade to characterize the genetic alterations in human cancers have led to a better understanding of molecular drivers of this complex set of diseases. Although we in the cancer field hoped that this would lead to more effective drugs, historically, our ability to translate cancer research to clinical success has been remarkably low. Sadly, clinical trials in oncology have the highest failure rate compared with other therapeutic areas. Given the high unmet need in oncology, it is understandable that barriers to clinical development may be lower than for other disease areas, and a larger number of drugs with suboptimal preclinical validation will enter oncology trials. However, this low success rate is not sustainable or acceptable, and investigators must reassess their approach to translating discovery research into greater clinical success and impact.

Many landmark findings in preclinical oncology research are not reproducible, in part because of inadequate cell lines and animal models.
the best scientists working in optimal conditions to make a discovery that will ultimately have an impact in the clinic. Issues related to clinical-trial design — such as uncontrolled phase II studies, a reliance on standard criteria for evaluating tumour response and the challenges of selecting patients prospectively — also play a significant part in the dismal success rate.

Unquestionably, a significant contributor to failure in oncology trials is the quality of published preclinical data. Drug development relies heavily on the literature, especially with regards to new targets and biology. Moreover, clinical endpoints in cancer are defined mainly in terms of patient survival, rather than by the intermediate endpoints seen in other disciplines (for example, cholesterol levels for statins). Thus, it takes many years before the clinical applicability of initial preclinical observations is known. The results of preclinical studies must therefore be very robust to withstand the rigours and challenges of clinical trials, stemming from the heterogeneity of both tumours and patients.

CONCLUDING RESEARCH FINDINGS

The scientific community assumes that the claims in a preclinical study can be taken at face value — that although there might be some errors in detail, the main message of the paper can be relied on and the data will, for the most part, stand the test of time. Unfortunately, this is not always the case. Although the issue of irreproducible data has been discussed between scientists for decades, it has recently received greater attention (see go.nature.com/q7i2up) as the costs of drug development have increased along with the number of late-stage clinical-trial failures and the demand for more effective therapies.

Over the past decade, before pursuing a particular line of research, scientists (including C.G.B.) in the haematology and oncology department at the biotechnology firm Amgen in Thousand Oaks, California, tried to confirm published findings related to that work. Fifty-three papers were deemed ‘landmark’ studies (see ‘Reproducibility of research findings’). It was acknowledged from the outset that some of the data might not hold up, because papers were deliberately selected that described something completely new, such as fresh approaches to targeting cancers or alternative clinical uses for existing therapeutics. Nevertheless, scientific findings were confirmed in only 6 (11%) cases. Even knowing the limitations of preclinical research, this was a shocking result.

Of course, the validation attempts may have failed because of technical differences or difficulties, despite efforts to ensure that this was not the case. Additional models were also used in the validation, because to drive a drug-development programme it is essential that findings are sufficiently robust and applicable beyond the one narrow experimental model that may have been enough for publication. To address these concerns, when findings could not be reproduced, an attempt was made to contact the original authors, discuss the discrepant findings, exchange reagents and repeat experiments under the authors’ direction, occasionally even in the laboratory of the original investigator. These investigators were all competent, well-meaning scientists who truly wanted to make advances in cancer research.

In studies for which findings could be reproduced, authors had paid close attention to controls, reagents, investigator bias and describing the complete data set. For results that could not be reproduced, however, data were not routinely analysed by investigators blinded to the experimental versus control groups. Investigators frequently presented the results of one experiment, such as a single Western-blot analysis. They sometimes said they presented specific experiments that supported their underlying hypothesis, but that were not reflective of the entire data set. There are no guidelines that require all data sets to be reported in a paper; often, original data are removed during the peer review and publication process.

Unfortunately, Amgen’s findings are consistent with those of others in industry. A team at Bayer HealthCare in Germany last year reported* that only about 25% of published preclinical studies could be validated to the point at which projects could continue. Notably, published cancer research represented 70% of the studies analysed in that report, some of which might overlap with the 53 papers examined at Amgen.

Some non-reproducible preclinical papers had spawned an entire field, with hundreds of secondary publications that expanded on elements of the original observation, but did not actually seek to confirm or falsify its fundamental basis. More troubling, some of the research has triggered a series of clinical studies — suggesting that many patients subjected themselves to a trial of a regimen or agent that probably wouldn’t work.

These results, although disturbing, do not mean that the entire system is flawed. There are many examples of outstanding research that has been rapidly and reliably translated into clinical benefit. In 2011, several new cancer drugs were approved, built on robust preclinical data. However, the inability of industry and clinical trials to validate results from the majority of publications on potential therapeutic targets suggests a general, systemic problem. On speaking with many investigators in academia and industry, we found widespread recognition of this issue.

IMPROVING THE PRECLINICAL ENVIRONMENT

How can the robustness of published preclinical cancer research be increased? Clearly there are fundamental problems in both academia and industry in the way such research is conducted and reported. Addressing these systemic issues will require tremendous commitment and a desire to change the prevalent culture. Perhaps the most crucial element for change is to acknowledge that the bar for reproducibility in performing and presenting preclinical studies must be raised.

An enduring challenge in cancer drug development lies in the erroneous use and misinterpretation of preclinical data from cell lines and animal models. The limitations of preclinical cancer models have been widely reviewed and are largely acknowledged by the field. They include the use of small numbers of poorly characterized tumour cell lines that inadequately recapitulate human disease, an inability to capture the human tumour environment, a poor appreciation of pharmacokinetics and pharmacodynamics, and the use of problematic endpoints and testing strategies. In addition, preclinical testing rarely includes predictive biomarkers that, when advanced to clinical trials, will help to distinguish those patients who are likely to benefit from a drug.

Wide recognition of the limitations in preclinical cancer studies means that business as usual is no longer an option. Cancer researchers must be more rigorous in their approach to preclinical studies. Given the inherent difficulties of mimicking the human micro-environment in preclinical research, reviewers and editors should demand greater thoroughness.

REPRODUCIBILITY OF RESEARCH FINDINGS

Preclinical research generates many secondary publications, even when results cannot be reproduced.

<table>
<thead>
<tr>
<th>Journal impact factor</th>
<th>Number of articles</th>
<th>Mean number of citations of non-reproduced articles*</th>
<th>Mean number of citations of reproduced articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>>20</td>
<td>21</td>
<td>248 (range 3–800)</td>
<td>231 (range 82–519)</td>
</tr>
<tr>
<td>5–19</td>
<td>32</td>
<td>169 (range 6–1,909)</td>
<td>13 (range 3–24)</td>
</tr>
</tbody>
</table>

Results from ten-year retrospective analysis of experiments performed prospectively. The term ‘non-reproduced’ was assigned on the basis of findings not being sufficiently robust to drive a drug-development programme.

Institutions and committees should give
Funding organizations must recognize
markers should be mandatory at the outset
improved validation strategies. Similarly,
more robust, predictive tumour models and
new research tools, as well as adopting
patient population. Cancer researchers
lines that are representative of the intended
confirmed.
showing models in which the hypothesis was
original hypothesis, is just as important as
data from tumour models in which a drug
the final publication. For example, showing
the entire data set must be represented in
different investigators in the same lab, and
ments should be repeated, preferably by
viously validated reagents. All experiments
and embrace the need for new cancer-
research tools and assist in their
development, and in providing greater
community access to those tools. Examples
include support for establishing large
cancer cell-line collections with easy
investigator access (a simple, universal
material-transfer agreement); capabilities
for genetic characterization of newly
derived tumour cell lines and xenografts;
identification of patient selection
biomarkers; and generation of more robust,
predictive tumour models. C.G.B. and L.M.E.

As with clinical studies, preclinical inves-
tigators should be blinded to the control
and treatment arms, and use only rigor-
ously validated reagents. All experiments
should include and show appropriate posi-
tive and negative controls. Critical exper-
iments should be repeated, preferably by
different investigators in the same lab, and
the entire data set must be represented in
the final publication. For example, showing
data from tumour models in which a drug
is inactive, and may not completely fit an
original hypothesis, is just as important as
showing models in which the hypothesis was
confirmed.

Studies should not be published using a
single cell line or model, but should include
a number of well-characterized cancer cell
lines that are representative of the intended
patient population. Cancer researchers
must commit to making the difficult, time-
consuming and costly transition towards
new research tools, as well as adopting
more robust, predictive tumour models and
improved validation strategies. Similarly,
efforts to identify patient-selection bio-
markers should be mandatory at the outset
of drug development.

Ultimately, however, the responsibility
for design, analysis and presentation of
data rests with investigators, the laboratory
and the host institution. All are account-
able for poor experimental design, a lack
of robust supportive data or selective
data presentation. The scientific process
demands the highest standards of quality,
ethics and rigour.

BUILDING A STRONGER SYSTEM

What reasons underlie the publication of
erroneous, selective or irreproducible data?
The academic system and peer-review pro-
cess tolerates and perhaps even inadvertently
encourages such conduct. To obtain fund-
ing, a job, promotion or tenure, research-
ers need a strong publication record, often
including a first-authored high-impact
publication. Journal editors, reviewers and
grant-review committees often look for a
scientific finding that is simple, clear and
complete — a ‘perfect’ story. It is therefore
tempting for investigators to submit selected
data sets for publication, or even to massage
data to fit the underlying hypothesis.

But there are no perfect stories in biology.
In fact, gaps in stories can provide opportu-
nities for further research — for example, a
treatment that may work in only some cell
lines may allow elucidation of markers of
sensitivity or resistance. Journals and grant
reviewers must allow for the presentation of
imperfect stories, and recognize and reward
reproducible results, so that scientists feel
less pressure to tell an imperfectly perfect
story to advance their careers.

Although reviewers, editors and grant-
committee members share some responsi-
bility for flaws in the system, investigators
must be accountable for the data they gener-
ate, analyse and submit. We in the field must
remain focused on the purpose of cancer
research: to improve the lives of patients.
Success in our own careers should be a con-
sequence of outstanding research that has an
impact on patients.

The lack of rigour that currently exists
around generation and analysis of preclinical
data is reminiscent of the situation in clini-
cal research about 50 years ago. The changes
that have taken place in clinical-trials pro-
cesses over that time indicate that changes
in prevailing attitudes and philosophies can
occur (see ‘Improving the reliability of pre-
clinical cancer studies’).

Improving preclinical cancer research to
the point at which it is reproducible and
translatable to clinical-trial success will be
an extraordinarily difficult challenge.
However, it is important to remember that
patients are at the centre of all these efforts.
If we in the field forget this, it is easy to
lose our sense of focus, transparency and
urgency. Cancer researchers are funded
by community taxes and by the hard work
and philanthropic donations of advocates.
More importantly, patients rely on us to
embrace innovation, make advances and
deliver new therapies that will improve their
lives. Although hundreds of thousands of
research papers are published annually, too
few clinical successes have been produced
given the public investment of significant
financial resources. We need a system that
will facilitate a transparent discovery pro-
cess that frequently and consistently leads to
significant patient benefit.

RECOMMENDATIONS

Improving the reliability of preclinical cancer studies

We recommend the following steps to
to change the culture of oncology research
and improve the relevance of translational
studies:

- There must be more opportunities to
 present negative data. It should be the
 expectation that negative preclinical data
 will be presented at conferences and in
 publications. Preclinical investigators
 should be required to report all findings,
 regardless of the outcome. To facilitate this,
 funding agencies, reviewers and journal
 editors must agree that negative data can
 be just as informative as positive data.
- Journal editors must play an active part
 in initiating a cultural change. There must
 be mechanisms to report negative data that
 are accessible through PubMed or other
 search engines. There should be links to
 journal articles in which investigators have
 reported alternative findings to those in an
 initial (sometimes considered landmark)
publication. One suggestion is to include
‘tags’ that report whether the key findings of
a seminal paper were confirmed.
- There should be transparent
 opportunities for trainees, technicians and
 colleagues to discuss and report troubling
 or unethical behaviours without fearing
 adverse consequences.
- Greater dialogue should be encouraged
 between physicians, scientists, patient
 advocates and patients. Scientists benefit
 from learning about clinical reality.
 Physicians need better knowledge of the
 challenges and limitations of preclinical
 studies. Both groups benefit from improved
 understanding of patients’ concerns.
- Institutions and committees should give
 more credit for teaching and mentoring:
 relying solely on publications in top-tier
 journals as the benchmark for promotion
 or grant funding can be misleading,
 and does not recognize the valuable
 contributions of great mentors, educators
 and administrators.
- Funding organizations must recognize
 and embrace the need for new cancer-
 research tools and assist in their
development, and in providing greater
 community access to those tools. Examples
 include support for establishing large
cancer cell-line collections with easy
 investigator access (a simple, universal
 material-transfer agreement); capabilities
 for genetic characterization of newly
derived tumour cell lines and xenografts;
 identification of patient selection
 biomarkers; and generation of more robust,
predictive tumour models. C.G.B. and L.M.E.

C. Glenn Begley is a consultant and
former vice-president and global head of
Hematology and Oncology Research at
Amgen, Thousand Oaks, California 91359,
USA. Lee M. Ellis is at the University of
Texas M. D. Anderson Cancer Center,
Houston, Texas 77030, USA.
e-mail: lellis@mdanderson.org

2. Francia, G. & Kerbel, R. S. Nature Biotechnol. 28,
561–562 (2010).
Clin. Oncol. http://dx.doi.org/10.1038/