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Abstract

An essential component of inference based on familiar frequentist notions,

such as p-values, significance and confidence levels, is the relevant sampling dis-

tribution. This feature results in violations of a principle known as the strong

likelihood principle (SLP), the focus of this paper. In particular, if outcomes x∗

and y∗ from experiments 1 and 2 (both with unknown parameter ), have

different probability models 1() 2 () then even though 1(x
∗; ) = 2(y

∗; )
for all , outcomes x∗ and y∗ may have different implications for an inference
about . Although such violations stem from considering outcomes other than

the one observed, we argue, this does not require us to consider experiments

other than the one performed to produce the data. David Cox (1958) proposes

the Weak Conditionality Principle (WCP) to justify restricting the space of

relevant repetitions. The WCP says that once it is known which  produced

the measurement, the assessment should be in terms of the properties of .

The surprising upshot of Allan Birnbaum’s (1962) argument is that the SLP

appears to follow from applying the WCP in the case of mixtures, and so un-

controversial a principle as sufficiency (SP). But this would preclude the use of

sampling distributions. The goal of this article is to provide a new clarification

and critique of Birnbaum’s argument. Although his argument purports that

[(WCP and SP), entails SLP], we show how data may violate the SLP while

holding both the WCP and SP. Such cases also refute [WCP entails SLP].

Key words: Birnbaumization, likelihood principle (weak and strong), sam-

pling theory, sufficiency, weak conditionality
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1 Introduction

It is easy to see why Birnbaum’s argument for the strong likelihood principle (SLP)

has long been held as a significant, if controversial, result for the foundations of

statistics. Not only do all of the familiar frequentist error-probability notions, p-

values, significance levels, and so on violate the SLP, but the Birnbaum argument

purports to show that the SLP follows from principles that frequentist sampling

theorists accept:

The likelihood principle is incompatible with the main body of modern

statistical theory and practice, notably the Neyman-Pearson theory of

hypothesis testing and of confidence intervals, and incompatible in general

even with such well-known concepts as standard error of an estimate and

significance level. (Birnbaum 1968, 300)

The incompatibility, in a nutshell, is that on the SLP, once the data x are given,

outcomes other than x are irrelevant to the evidential import of x. “[I]t is clear that

reporting significance levels violates the LP [SLP], since significance levels involve

averaging over sample points other than just the observed x.” (Berger and Wolpert

1988, 105).

1.1 The SLP and a frequentist principle of evidence (FEV)

Birnbaum, while responsible for this famous argument, rejected the SLP because “the

likelihood concept cannot be construed so as to allow useful appraisal, and thereby

possible control, of probabilities of erroneous interpretations” (1969, p. 128). That

is, he thought the SLP at odds with a fundamental frequentist principle of evidence.

Frequentist Principle of Evidence (general): Drawing inferences from data

requires considering the relevant error probabilities associated with the underlying

data generating process.

David Cox intended the central principle invoked in Birnbaum’s argument, the

Weak Conditionality Principle (WCP), as one important way to justify restricting the

space of repetitions that are relevant for informative inference. Implicit in this goal

is that the role of the sampling distribution for informative inference is not merely to

ensure low error rates in repeated applications of a method, but to avoid misleading

inferences in the case at hand (Mayo 1996; Mayo and Spanos 2006, 2011; Mayo and

Cox 2006/2010).

To refer to the most familiar example, the WCP says that if a parameter of

interest  could be measured by two instruments, one more precise then the other,

and a randomizer that is utterly irrelevant to  is used to decide which instrument

to use, then, once it is known which experiment was run and its outcome given,

the inference should be assessed using the behavior of the instrument actually used.

The convex combination of the two instruments, linked via the randomizer, defines a

mixture experiment, . According to theWCP, one should condition on the known
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experiment, even if an unconditional assessment improves the long-run performance

(Cox and Hinkley 1974, 96-7).

While conditioning on the instrument actually used seems obviously correct, noth-

ing precludes Neyman-Pearson theory from choosing the procedure “which is best

on the average over both experiments” in  (Lehmann and Romano 2005, 394).

They ask: “for a given test or confidence procedure, should probabilities such as level,

power, and confidence coefficient be calculated conditionally, given the experiment

that has been selected, or unconditionally?” They suggest that “[t]he answer cannot

be found within the model but depends on the context” (ibid). The WCP gives a

rationale for using the conditional appraisal in the context of informative parametric

inference.

1.2 What must logically be shown

However, the upshot of the SLP is to claim that the sampling theorist must go all the

way, as it were, given a parametric model. If she restricts attention to the experiment

producing the data in the mixture experiment, then she is led to consider just the

data and not the sample space, once the data are in hand. While the argument has

been stated in various forms, the surprising upshot of all versions is that the SLP

appears to follow from applying the WCP in the case of mixture experiments, and

so uncontroversial a notion as sufficiency (SP). “Within the context of what can be

called classical frequency-based statistical inference, Birnbaum (1962) argued that

the conditionality and sufficiency principles imply the [strong] likelihood principle”

(Evan, Fraser and Monette 1986,182).

Since the challenge is for a sampling theorist who holds the WCP, such as David

Cox, it is obligatory to consider whether and how such a sampling theorist can meet

it. While the WCP is not itself a theorem in a formal system, Birnbaum’s argument

purports that the following is a theorem:

[(WCP and SP) entails SLP].

If true, any data instantiating both WCP and SP could not also violate the SLP,

on pain of logical contradiction. We will show how data may violate the SLP while

still adhering to both the WCP and SP. Such cases also refute [WCP entails SLP],

making our argument applicable to attempts to weaken or remove the SP. Violating

SLP may be written as not-SLP.

We follow the formulations of the Birnbaum argument given in Berger andWolpert

(1988), Birnbaum (1962), Casella and R. Berger (2002), and D. R. Cox (1977). The

current analysis clarifies and fills in some gaps of an earlier discussion in Mayo (2010),

Mayo and Cox (2011), and lets us cut through a fascinating and complex literature.

The puzzle is solved by adequately stating the WCP, and keeping the meaning of

terms consistent, as they must be in an argument built on a series of identities.
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1.3 Does it matter?

On the face of it, current day uses of sampling theory statistics do not seem in need

of going back 50 years to tackle a foundational argument. This may be so, but only if

it is correct to assume that the Birnbaum argument is flawed somewhere. Sampling

theorists who feel unconvinced by some of the machinations of the argument must

admit some discomfort at the lack of resolution of the paradox. If one cannot show the

relevance of error probabilities and sampling distributions to inferences once the data

are in hand, then the uses of frequentist sampling theory, and resampling methods,

for inference purposes rest on shaky foundations.

The SLP is deemed of sufficient importance to be included in textbooks on sta-

tistics, along with a version of Birnbaum’s argument that we will consider.

It is not uncommon to see statistics texts argue that in frequentist theory

one is faced with the following dilemma: either to deny the appropri-

ateness of conditioning on the precision of the tool chosen by the toss

of a coin, or else to embrace the strong likelihood principle, which entails

that frequentist sampling distributions are irrelevant to inference once the

data are obtained. This is a false dilemma. . . . The ‘dilemma’ argument

is therefore an illusion. (Cox and Mayo 2010, 298)

If we are correct, this refutes a position that is generally presented as settled in

current texts. But the illusion is not so easy to dispel; thus this paper.

Perhaps, too, our discussion will illuminate a point of agreement between sam-

pling theorists and contemporary nonsubjective Bayesians who concede they “have

to live with some violations of the likelihood and stopping rule principles” (Ghosh,

Delampady, and Sumanta 2006, 148), since their prior probability distributions are

influenced by the sampling distribution. “This, of course, does not happen with sub-

jective Bayesianism. .. the objective Bayesian responds that objectivity can only be

defined relative to a frame of reference, and this frame needs to include the goal of

the analysis.” (J. Berger 2006, 394). By contrast, Savage stressed:

According to Bayes’s theorem,  (x|). . . constitutes the entire evidence
of the experiment. . . [I]f y is the datum of some other experiment, and if

it happens that  (x|) and  (y|) are proportional functions of  (that
is, constant multiples of each other), then each of the two data x and y

have exactly the same thing to say about the value of . (Savage 1962a,

17, using  for his  and  for )

2 Notation and sketch of Birnbaum’s argument

2.1 Points of notation and interpretation

Birnbaum focuses on informative inference about a parameter  in a given model  ,

and we retain that context. The argument calls for a general term to abbreviate:
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the inference implication from experiment  and result z, where  is an experiment

involving the observation of Z with a given distribution (z; ) and a model  . We

use:

Infr[z]: the parametric statistical inference from a given or known ( z).

(We prefer “given” to “known” to avoid reference to psychology.) We assume

relevant features of model  are embedded in the full statement of experiment .

An inference method indicates how to compute the informative parametric inference

from ( z). Let:

( z)⇒ Infr[z]: an informative parametric inference about  from given

( z) is to be computed by means of Infr[z].

The principles of interest turn on cases where ( z) is given, and we reserve “⇒” for
such cases. The abbreviation Infr[z], first developed in Cox and Mayo (2010), could

allude to any parametric inference account; we use it here to allow ready identification

of the particular experiment , and its associated sampling distribution, whatever

it happens to be. Infr
(z) is always understood as using the convex combination

over the elements of the mixture.

Assertions about how inference “is to be computed given ( z)” are intended to

reflect the principles of evidence that arise in Birnbaum’s argument, whether math-

ematical or based on intuitive, philosophical considerations about evidence. This is

important because Birnbaum emphasizes that the WCP is “not necessary on mathe-

matical grounds alone, but it seems to be supported compellingly by considerations

. . . concerning the nature of evidential meaning” of data when drawing paramet-

ric statistical inferences (Birnbaum 1962, 491). In using “=” we follow the common

notation even though WCP is actually telling us when z1 and z2 should be deemed

inferentially equivalent for the associated inference.

By non-contradiction, for any ( z): Infr[z] = Infr[z]

So to apply a given inference implication means its inference directive is used, and

not some competing directive at the same time. Two outcomes z1 and z2 will be

said to have the same inference implications in , and so are inferentially equivalent

within , whenever, Infr[z1] = Infr[z2].

2.2 The Strong Likelihood Principle: SLP

The principle under dispute, the SLP, asserts the inferential equivalence of outcomes

from distinct experiments 1 and 2. It is a universal if-then claim:

SLP: For any two experiments 1 and 2 with different probability mod-

els 1() 2() but with the same unknown parameter , if outcomes x
∗

and y∗ (from 1 and 2 respectively) give rise to proportional likelihood
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functions (1(x
∗;θ)=2(y∗;θ) for all , for  a positive constant), then

x∗ and y∗ should be inferentially equivalent for any inference concerning
parameter .

A shorthand for the entire antecedent is that (1x
∗) is a SLP pair with (2y∗),

or just x∗ and y∗ form an SLP pair (from {1 2}). Assuming all the SLP stipula-
tions, e.g., that θ is a shared parameter (about which inferences are to be concerned),

we have:

SLP: If (1x
∗) and (2y∗) form an SLP pair, then Infr1[x

∗] = Infr2 [y
∗].

Experimental pairs 1 and 2 involve observing random variables X and Y,

respectively. Thus (2, y
∗) or just y∗ asserts “2 is performed and y∗ observed”; so

we may abbreviate Infr2 [(2y
∗)] as Infr2 [y

∗]. Likewise for x∗. A generic z is used
when needed.

2.3 Sufficiency Principle (Weak Likelihood Principle)

For informative inference about  in , if  is a (minimal) sufficient statistic for ,

the Sufficiency Principle asserts:

SP: If (z1) = (z2), then Infr[z1] = Infr[z2].

That is, since inference within the model is to be computed using the value of ()

and its sampling distribution, identical values of  have identical inference impli-

cations, within the stipulated model. Nothing in our argument will turn on the

minimality requirement, although it is common.

2.3.1 Model checking

An essential part of the statements of the principles SP, WCP, and SLP is that

the validity of the model is granted as adequately representing the experimental

conditions at hand (Birnbaum 1962, 491). Thus, accounts that adhere to the SLP

are not thereby prevented from analyzing features of the data, such as residuals, in

checking the validity of the statistical model itself. There is some ambiguity on this

point in Casella and R. Berger (2002):
Most model checking is, necessarily, based on statistics other than a suf-

ficient statistic. For example, it is common practice to examine residuals

from a model. . . Such a practice immediately violates the Sufficiency

Principle, since the residuals are not based on sufficient statistics. (Of

course such a practice directly violates the [strong] LP also.) (Casella and

R. Berger 2002, 295-6)
They warn that before considering the SLP and WCP, “we must be comfortable

with the model” (296). It seems to us more accurate to regard the principles as

inapplicable, rather than violated, when the adequacy of the relevant model is lacking.

Applying a principle will always be relative to the associated experimental model.
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2.3.2 Can two become one?

The SP is sometimes called the weak likelihood principle, limited as it is to a single

experiment E, with its sampling distribution. This suggests that if an arbitrary SLP

pair, (1x
∗) and (2y∗), could be viewed as resulting from a single experiment

(e.g., by a mixture), then perhaps they could become inferentially equivalent using

SP. This will be part of Birnbaum’s argument, but is neatly embedded in his larger

gambit to which we now turn.

2.4 Birnbaumization: Key gambit in Birnbaum’s argument

The larger gambit of Birnbaum’s argument may be dubbed Birnbaumization. An

experiment has been run, label it as 2, and y
∗ observed. Suppose, for the parametric

inference at hand, that y∗ has an SLP pair x∗ in a distinct experiment1. Birnbaum’s
task is to show the two are evidentially equivalent, as the SLP requires.

We are to imagine that performing 2 was the result of flipping a fair coin (or

some other randomizer given as irrelevant to ) to decide whether to run 1 or 2.

Cox terms this the “enlarged experiment” (Cox 1978, p. 54), . We are then to

define a statistic  that stipulates: If (y
∗) is observed, its SLP pair x∗ in the

unperformed experiment is reported.

(Z) =

½
(1x

∗) if (1x
∗) or (2y∗)

( z) otherwise.

Birnbaum’s argument focuses on the first case, and ours will as well.

Following our simplifying rule, whenever 2 is performed and Y = y∗ observed,
and y∗ is seen to admit a SLP pair, then label its particular SLP pair (1x∗). Any
problems of non-uniqueness in identifying SLP pairs are put to one side, nor does

Birnbaum consider them. Thus when (2y
∗) is observed,  reports it as (1x∗).

This yields the Birnbaum experiment, , with its statistic . We abbreviate the

inference (about ) in  as:

Infr [y
∗]

The inference implication (about ) in  from y∗ under Birnbaumization is:

(2y
∗)⇒ Infr [x

∗]

where the computation in  is always a convex combination over 1 and 2. But

also:

(1x
∗)⇒ Infr [x

∗]

It follows that, within , x
∗ and y∗ are inferentially equivalent. Call this claim:

[B]: Infr [x
∗] = Infr [y

∗].
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The argument is to hold for any SLP pair. Now [B] does not yet reach the SLP

which requires:

Infr1[x
∗] = Infr2 [y

∗]

But Birnbaum does not stop there. Having constructed the hypothetical experiment

, we are to use the WCP to condition back down to the known experiment 2.

But this will not produce the SLP as we now show.

2.5 Why appeal to hypothetical mixtures?

Before turning to that, we address a possible query: why suppose the argument makes

any appeal to a hypothetical mixture? (See also Section 5.1.) The reason is this: The

SLP does not refer to mixtures. It is a universal generalization claiming to hold for

an arbitrary SLP pair. But we have no objection to imagining (as Birnbaum does

1962, 496) a universe of all of the possible SLP pairs, where each pair has resulted

from a -irrelevant randomizer (for the given context). Then, when y∗ is observed, we
pluck the relevant pair, and construct . Our question is: why should the inference

implication from y∗ be obtained by reference to Infr [y
∗], the convex combination?

Birnbaum does not stop at [B], but appeals to the WCP. Note the WCP is based on

the outcome y∗ being given.

3 SLP Violation pairs

Birnbaum’s argument is of central interest when we have SLP violations. We may

characterize an SLP violation as any inferential context where the antecedent of the

SLP is true and the consequent is false.

SLP violation: (1x
∗) and (2y∗) form an SLP pair, but Infr1[x

∗] 6=
Infr2[y

∗].

A SLP pair that violates the SLP, will be called an SLP violation pair (from 1

2, respectively).

It is not always emphasized that whether (and how) an inference method violates

the SLP depends on the type of inference to be made, even within an account that

allows SLP violations. One cannot just look at the data, but must also consider the

inference. For example, there may be no SLP violation if the focus is on point against

point hypotheses, whereas in computing a statistical significance probability under

a null hypothesis there may be. “Significance testing of a hypothesis. . . is viewed

by many as a crucial element of statistics, yet it provides a startling and practically

serious example of conflict with the [SLP].” (Berger and Wolpert, 1988, 104-5). The

following is a dramatic example that often arises in this context.
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3.1 Fixed versus sequential sampling

Suppose X andY are samples from distinct experiments 1 and 2, both distributed

as N( 2), with 2 identical and known, and p-values are to be calculated for the

null hypothesis 0:  = 0 against 1:  6= 0.
In 2 the sampling rule is to continue sampling until:   =196

√
, where

=
1


P

=1  In 1, the sample size  is fixed, and  = 05.

In order to arrive at the SLP pair we have to consider the particular outcome

observed. Suppose that 2 is run and is first able to stop with =169 trials. A choice

for its SLP pair x∗ would be (1 196
√
169), and the SLP violation is the fact that:

Infr1[196
√
169] 6= Infr2 [=169]

3.2 Frequentist evidence in the case of significance tests

“[S]topping ‘when the data looks good’ can be a serious error when com-

bined with frequentist measures of evidence. For instance, if one used

the stopping rule [above]. . . but analyzed the data as if a fixed sample

had been taken, one could guarantee arbitrarily strong frequentist ‘signif-

icance’ against 0 ...” (Berger and Wolpert, 1988, 77).

From their perspective, the problem is with the use of frequentist significance. For

a detailed discussion in favor of the irrelevance of this stopping rule, see Berger and

Wolpert, 1988, 74-88. For sampling theorists, by contrast, this example “taken in the

context of examining consistency with  = 0, is enough to refute the strong likelihood

principle” (Cox 1978, 54), since, with probability 1, it will stop with a ‘nominally’

significant result even though  = 0. It contradicts what Cox and Hinkley call “the

weak repeated sampling principle” (Cox and Hinkley 1974, 51). More generally, the

frequentist principle of evidence (FEV) would regard small p-values as misleading if

they result from a procedure that readily generates small p-values under 0
1.

For the sampling theorist, to report a 196 standard deviation difference known

to have come from optional stopping, just the same as if the sample size had been

fixed, is to discard relevant information for inferring inconsistency with the null, while

“according to any approach that is in accord with the strong likelihood principle, the

fact that this particular stopping rule has been used is irrelevant.” (Cox and Hinkley

1974, 51)2. The actual p-value will depend of course on when it stops. We emphasize

that our argument does not turn on accepting a frequentist principle of evidence

1Mayo and Cox 2006/2010, 254:

FEV: y is (strong) evidence against 0, if and only if, were 0 a correct description of the

mechanism generating y, then, with high probability this would have resulted in a less discordant

result than is exemplified by y.
2Analogous situations occur without optional stopping, as with selecting a data-dependent, max-

imally likely, alternative (Cox and Hinkley 1974, example 2.4.1, 51). See also Mayo and Kruse

2001.
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(FEV); but these considerations are useful both to motivate and understand the core

principle of Birnbaum’s argument, the WCP.

4 The Weak Conditionality Principle (WCP)

From Section 2.4 we have: [B] Infr [x
∗] = Infr [y

∗] since the inference implication
is by the constructed . How might Birnbaum move from [B] to the SLP, for an

arbitrary pair x∗and y∗?
There are two possibilities. One would be to insist informative inference ignore

or be insensitive to sampling distributions. But since we know that SLP violations

result because of the difference in sampling distributions, to simply deny them would

obviously render his argument circular (or else irrelevant for sampling theory). We

assume Birnbaum does not intend his argument to be circular, and Birnbaum relies

on further steps to which we now turn.

4.1 Mixture (): two instruments of different precisions

(Cox, 1958)

The crucial principle of inference on which Birnbaum’s argument rests is the weak

conditionality principle (WCP), intended to indicate the relevant sampling distribu-

tion in the case of certain mixture experiments. The famous example to which we

already alluded, “is now usually called the ‘weighing machine example,’ which draws

attention to the need for conditioning, at least in certain types of problems” (Reid

1992, 582).

We flip a fair coin to decide which of two instruments, 1 or 2, to use in observing

a Normally distributed random sample Z to make inferences about mean . 1
has variance of 1, while that of 2 is 10

6. We limit ourselves to mixtures of two

experiments.

In testing a null hypothesis such as  = 0, the same z measurement would cor-

respond to a much smaller p-value were it to have come from 1 rather than from

2: denote them as 1(z) and 2(z), respectively. The overall (or unconditional)

significance level of the mixture  is the convex combination of the p-values:

[1(z)+ 2(z)]2. This would give a misleading report of how precise or stringent the

actual experimental measurement is (Cox and Mayo 2010, 296). (See Example 4.6,

Cox and Hinkley 1974, 95-6; Birnbaum 1962, 491).

Suppose that we know we have observed a measurement from 2 with its much

larger variance:

The unconditional test says that we can assign this a higher level of signif-

icance than we ordinarily do, because if we were to repeat the experiment,

we might sample some quite different distribution. But this fact seems

irrelevant to the interpretation of an observation which we know came

from a distribution [with the larger variance] (Cox 1958, 361).
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The WCP says simply: once it is known which  has produced z, the p-value or

other inferential assessment should be made with reference to the experiment actually

run.

4.2 Weak Conditionality Principle (WCP) in the weighing

machine example

We first state the WCP in relation to this example.

We are given ( z) that is, ( z) results from mixture experiment .

WCP exhorts us to condition to be relevant to the experiment actually producing the

outcome. This is an example of what Cox terms, “conditioning for relevance”.

WCP: Given ( z): Condition on the  producing the result:

( z)⇒ Infr[( z)] = (z) = Infr[z]

Do not use the unconditional formulation:

( z); Infr
[( z)] = [1(z) + 2(z)]2

The concern is that:

Infr
[( z)] = [1(z) + 2(z)]2 6= (z)

There are three sampling distributions, and the WCP says the relevant one to

use whenever Infr
[z] 6= Infr[z] is the one known to have generated the result

(Birnbaum 1962, 491). In other cases the WCP would make no difference.

4.3 The WCP and its corollaries

We can give a general statement of the WCP as follows:

A mixture  selects between 1 and 2, using a -irrelevant process, and it is

given that ( z) results, =1 2 WCP directs the inference implication. Knowing

we are mapping an outcome from a mixture, there is no need to repeat the first

component ( z) so it is dropped except when a reminder seems useful.

(i) Condition to obtain relevance:

( z)⇒ Infr[( z)] = Infr(z)

In words: z arose from  but the inference implication is based on 

(ii) Eschew unconditional formulations:

( z); Infr
[z]
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whenever the unconditional treatment yields a different inference implication:

i.e., whenever Infr
[z] 6= Infr[z]

Note: Infr
[z] which abbreviates Infr

[( z)] asserts that the inference

implication uses the convex combination of the relevant pair of experiments.

We now highlight some points for reference.

4.3.1 WCP makes a difference

The cases of interest here are where applying WCP would alter the unconditional

implication. In these cases WCP makes a difference.

Note that (ii) blocks computing the inference implication from ( z) as Infr
[z]

whenever Infr
[z] 6= Infr[z]. Here 1 2, and  would correspond to three

sampling distributions.

WCP requires the experiment and its outcome to be given or known: If it is given

only that z came from 1 or 2, and not which, then WCP does not authorize (i).

In fact, we would wish to block such an inference implication. We might write this:

(1 or 2 z); Infr1[z]

Point on notation: The use of “⇒” is for a given outcome. We may allow it to
be used without ambiguity when only a disjunction is given, because while 1 entails

1 or 2, the converse does not hold. So no erroneous substitution into an inference

implication would follow.

4.3.2 Irrelevant augmentation: Keep irrelevant facts irrelevant (Irrel)

Another way to view the WCP is to see it as exhorting us to keep what is irrelevant

to the sampling behavior of the experiment performed irrelevant (to the inference

implication). Consider Birnbaum’s (1969, 119) idea that a “trivial" but harmless

addition to any given experimental result z might be to toss a fair coin and augment

z with a report of heads or tails (where this is irrelevant to the original model).

Note the similarity to attempts to get an exact significance level in discrete tests,

by allowing borderline outcomes to be declared significant or not (at the given level)

according to the outcome of a coin toss. The WCP, of course, eschews this. But there

is a crucial ambiguity to avoid. It is a harmless addition only if it remains harmless

to the inference implication. If it is allowed to alter the test result, it is scarcely

harmless.

A holder of the WCP may stipulate that a given z can always be augmented with

the result of a -irrelevant randomizer, provided that it remains irrelevant to the

inference implication about  in . We can abbreviate this irrelevant augmentation

of a given result z as a conjunction: (& Irrel).

(Irrel): Infr[(& Irrel z)] = Infr[z] =1 2

We illuminate this in the next subsection.
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4.3.3 Is the WCP an equivalence?

“It was the adoption of an unqualified equivalence formulation of conditionality, and

related concepts, which led, in my 1962 paper, to the monster of the likelihood axiom”

(Birnbaum 1975, 263). He admits the contrast with “the one-sided form to which

applications” had been restricted (1969; p. 139, note 11). The question whether the

WCP is a proper equivalence relation, holding in both directions, is one of the most

central issues in the argument. But what would be alleged to be equivalent?

Obviously not the unconditional and the conditional inference implications: the

WCP makes a difference just when they are inequivalent, i.e., when Infr
[z] 6=

Infr[z]. Our answer is that the WCP involves an inequivalence as well as an equiva-

lence. The WCP prescribes conditioning on the experiment known to have produced

the data, and not the other way around. It is their inequivalence that gives Cox’s

WCP its normative proscriptive force. To assume the WCP identifies Infr
[z] and

Infr[z] leads to trouble. (We return to this in Section 7.)

However, there is an equivalence in WCP(i). Once the outcome is given, the

addition of -irrelevant features about the selection of the experiment performed are

to remain irrelevant to the inference implication:

Infr[( z)] = Infr[(& Irrel z)]

Both are the same as Infr[z]. While claiming that z came from a mixture, even

knowing it came from a non-mixture, may seem unsettling, we grant it for purposes of

making out Birnbaum’s argument. By (Irrel), it cannot alter the inference implication

under .

5 Birnbaum’s SLP argument

5.1 Birnbaumization and the WCP

What does the WCP entail as regards Birnbaumization? Now WCP refers to mix-

tures, but is the Birnbaum experiment  a mixture experiment? Not really. One

cannot perform the following: Toss a fair coin (or other -irrelevant randomizer). If

it lands heads, perform an experiment 2 that yields a member of an SLP pair y
∗;

if tails, observe an experiment that yields the other member of the SLP pair x∗. We
do not know what outcome would have resulted from the unperformed experiment,

much less that it would be an outcome with a proportional likelihood to the observed

y∗. There is a single experiment, and it is stipulated we know which, and what its
outcome was. Some have described the Birnbaum experiment as unperformable, or at

most a “mathematical mixture” rather than an “experimental mixture” (Kalbfleisch,

1975, 252-253). Birnbaum himself calls it a “hypothetical” mixture (1962, 496).

While a holder of the WCP may simply discount its general applicability in hypo-

thetical experiments, given that Birnbaum’s argument has stood for over fifty years,
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we wish to give it maximal mileage. Birnbaumization may be “performed” in the

sense that  can be defined for any SLP pair x
∗, y∗. Refer back to the hypotheti-

cal universe of SLP pairs, each imagined to have been generated from a -irrelevant

mixture (Section 2.5). When we observe y∗ we pluck the x∗ companion needed for
the argument. In short, we can Birnbaumize an experimental result: Constructing

statistic  with the derived experiment  is the “performance”. But what cannot

shift in the argument is the stipulation that  be given or known (as noted in 4.4.2);

that  be fixed. Nor can the meaning of “given z∗” shift through the argument, if it
is to be sound.

Given z∗, the WCP precludes Birnbaumizing. On the other hand, if the reported
z∗ was the value of , then we are given only the disjunction, precluding the com-
putation relevant for  fixed (4.3.1). Let us consider the components of Birnbaum’s

argument.

5.2 Birnbaum’s argument

(2y
∗) is given (and it has an SLP pair x∗). The question is to its inferential import.

Birnbaum will seek to show that:

Infr2[y
∗] = Infr1[x

∗]

The value of  is (1x
∗). Birnbaumization maps outcomes into hypothetical mix-

tures .

(1) If the inference implication is by the stipulations of :

(2y
∗)⇒ Infr [x

∗] = Infr [y
∗]

Likewise for (1x
∗).  is a sufficient statistic for  (the conditional distribution

of Z given  is independent of ).

(2) If the inference implication is by WCP:

(2y
∗); Infr [y

∗]

rather:

(2y
∗)⇒ Infr2 [y

∗] and (1x
∗)⇒ Infr1[x

∗]

Following the inference implication according to  in (1) is at odds with what

the WCP stipulates in (2). Given y∗, Birnbaumization directs using the convex
combination over the components of ; WCP eschews doing so. We will not get:

Infr1[x
∗] = Infr2 [y

∗]

The SLP only seems to follow by the erroneous identity:

Infr [z
∗
 ] = Infr[z

∗
 ] for =1 2
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5.3 Refuting the supposition that (SP andWCP entails SLP)

We can uphold both (1) and (2), while at the same time hold:

(3) Infr1 [x
∗] 6= Infr2[y∗].

Specifically, any case where x∗ and y∗ is a SLP violation pair, is a case where (3) is
true. Since whenever (3) holds, we have a counterexample to the SLP generalization,

this demonstrates that SP and WCP and not-SLP are logically consistent. Thus so

are WCP and not-SLP. This refutes the supposition that [(SP and WCP) entails

SLP], and also any purported derivation of SLP from WCP alone3.

SP is not blocked in (1). The SP is always relative to a model, here . We have:

x∗ and y∗ are SLP pairs in , and Infr [x
∗] = Infr [y

∗] (i.e., [B] holds).

One may allow different contexts to dictate whether or not to condition (i.e.,

whether to apply (1) or (2)), but we know of no inference account that permits, let

alone requires, self-contradictions. By non-contradiction, for any ( z): Infr[z] =

Infr[z]

( “⇒” is a function from outcomes to inference implications, and z=z, for any z.)

Upholding and applying. This recalls our points in Section 2.1. Applying a

rule means following its inference directive. We may uphold the if-then stipulations

in (1) and (2), but to apply their competing implications in a single case is self-

contradictory.

Arguing from a self-contradiction is unsound. The slogan that anything

follows from a self-contradiction G and not-G is true, since for any claim C, the

following is a logical truth: If G then (if not-G then C). Two applications of modus

ponens yield C. One can also derive not-C! But since G and its denial cannot be

simultaneously true, any such argument is unsound. (A sound argument must have

true premises and be logically valid.) We know Birnbaum was not intending to argue

from a self-contradiction, but this may inadvertently occur.

5.4 What if the SLP pair arose from an actual mixture?

What if the SLP pair x∗ y∗ arose from a genuine, and not a Birnbaumized, mixture

(Consider fixed versus sequential sampling, Section 3.1. Suppose 1 fixes  at 169,

the coin flip says perform 2, and it happens to stop at =169.) We may allow that

an unconditional formulation may be defined so that:

Infr
[x∗] = Infr

[y∗]

3By allowing applications of Birnbaumization, and appropriate choices of the irrelevant random-

ization probabilities, SP can be weakened to “mathematical equivalence”, or even (with compounded

mixtures) omitted so that WCP appears to entail SLP. See Evans, Fraser and Monet 1986.
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But WCP eschews the unconditional formulation; it says condition on the experiment

known to have produced z:

( z
∗
 )⇒ Infr[z

∗
 ]  = 1 2

Any SLP violation pair x∗y∗ remains one: Infr1[x
∗] 6= Infr2[y∗].

6 Discussion

We think a fresh look at this venerable argument is warranted. Wearing a logician’s

spectacles, and entering the debate outside of the thorny issues from decades ago,

may be an advantage.

It must be remembered that the onus is not on someone who questions if the

SLP follows from SP and WCP to provide suitable principles of evidence, however

desirable it might be to have them. The onus is on Birnbaum to show that for any

given y∗, a member of an SLP pair with x∗, with different probability models 1(),
2(), that he will be able to derive from SP and WCP, that x∗ and y∗ should have
the identical inference implications concerning shared parameter . We have shown

that SLP violations do not entail renouncing either the SP or the WCP.

It is no rescue of Birnbaum’s argument that a sampling theorist wants principles

in addition to the WCP to direct the relevant sampling distribution for inference;

indeed, Cox has given others. It was to make the application of the WCP in his

argument as plausible as possible to sampling theorists that Birnbaum refers to the

type of mixture in Cox’s (1958) famous example of instruments 1, 2 with different

precisions.

We do not assume sampling theory, but employ a formulation that avoids ruling

it out in advance. The failure of Birnbaum’s argument to reach the SLP relies only

on a correct understanding of the WCP. We may grant that for any y∗ its SLP pair
could occur in repetitions (and may even be out there as in Section 2.5). However, the

key point of the WCP is to deny that this fact should alter the inference implication

from the known y∗. To insist it should is to deny the WCP. Granted, WCP sought
to identify the relevant sampling distribution for inference from a specified type of

mixture, and a known y∗, but it is Birnbaum who purports to give an argument that
is relevant for a sampling theorist, and for “approaches which are independent of this

[Bayes’] principle” (1962, 495). Its implications for sampling theory is why it was

dubbed “a landmark in statistics” (Savage 1962b, 307).

Let us look at the two statements about inference implications from a given

(2y
∗), applying (1) and (2) in 5.2:

(2y
∗)⇒ Infr [x

∗]

(2y
∗)⇒ Infr2[y

∗]
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Can both be applied in exactly the same model with the same given z? The answer

is yes, so long as the WCP happens to make no difference:

Infr [z
∗
 ] = Infr[z

∗
 ]

Now the SLP must be applicable to any SLP pair. However, to assume that

(1) and (2) can be consistently applied for any x∗y∗ pair would be to assume no
SLP violations are possible, which really would render Birnbaum’s argument circular.

So from 5.3, the choices are to regard Birnbaum’s argument as unsound (arguing

from a contradiction) or circular (assuming what it purports to prove). Neither is

satisfactory. We are left with competing inference implications and no way to get to

the SLP. There is evidence Birnbaum saw the gap in his argument (Birnbaum 1972);

and in the end he held the SLP only restricted to (pre-designated) point against point

hypotheses4.

It is not SP and WCP that conflict, the conflict comes from WCP together with

Birnbaumization–understood as both invoking the hypothetical mixture, and erasing

the information as to which experiment the data came. If one Birnbaumizes, one

cannot at the same time uphold the “keep irrelevants irrelevant” (Irrel) stipulation of

the WCP. So for any given ( z) one must choose, and the answer is straightforward

for a holder of the WCP. To paraphrase Cox’s (1958, 361) objection to unconditional

tests:
Birnbaumization says that we can assign y∗ a different level of significance
than we ordinarily do, because one may identify an SLP pair x∗ and
construct statistic . But this fact seems irrelevant to the interpretation

of an observation which we know came from 2. To conceal the index,

and use the convex combination, would give a distorted assessment of

statistical significance.

7 Relation to other criticisms of Birnbaum

A number of critical discussions of the Birnbaum argument and the SLP exist. While

space makes it impossible to discuss them here, we believe the current analysis cuts

through this extremely complex literature. Take, for example, the most well-known

criticisms by Durbin (1970) and Kalbfleish (1975), discussed in the excellent paper

by Evan, Fraser and Monette (1986). Allowing that any y∗ may be viewed as having
arisen from Birnbaum’s mathematical mixture, they consider the proper order of

application of the principles. If we condition on the given experiment first, Kalbfleish’s

revised sufficiency principle is inapplicable, so Birnbaum’s argument fails. On the

other hand, Durbin argues, if we reduce to the minimal sufficient statistic first, then

his revised principle of conditionality cannot be applied. Again Birnbaum’s argument

fails. So either way it fails.

4This alone would not oust all sampling distributions. Birnbaum’s argument, even were it able

to get a foothold, would have to apply further rounds of conditioning to arrive at the data alone.
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Unfortunately, the idea that one must revise the initial principles in order to block

SLP allows downplaying or dismissing these objections as tantamount to denying

SLP at any cost (please see the references5). We can achieve what they wish to

show, without altering principles, and from WCP alone. Given y∗, WCP blocks
Birnbaumization; given y∗ has been Birnbaumized, the WCP precludes conditioning.
We agree with Evans, Fraser, and Monette (1986, 193) “that Birnbaum’s use of

[the principles] ... are contrary to the intentions of the principles, as judged by the

relevant supporting and motivating examples. From this viewpoint we can state that

the intentions of S and C do not imply L.” [Where S, C, and L are our SP, WCP

and SLP]. Like Durbin and Kalbfleisch, they offer a choice of modifications of the

principles to block the SLP. These are highly insightful and interesting; we agree

that they highlight a need to be clear on the experimental model at hand. Still, it is

preferable to state the WCP so as to reflect these “intentions”, without which it is

robbed of its function. The problem stems from mistaking WCP as the equivalence

Infr
[z] = Infr[z] (whether the mixture is hypothetical or actual). This is at odds

with the WCP. The puzzle is solved by adequately stating the WCP. Aside from that,

we need only keep the meaning of terms consistent through the argument.

We emphasize that we are neither rejecting the SP nor claiming that it breaks

down, even in the special case . The sufficiency of  within , as a mathe-

matical concept, holds: the value of  “suffices” for Infr [y
∗], the inference from

the associated convex combination. Whether reference to hypothetical mixture  is

relevant for inference from given y∗ is a distinct question. For an alternative criticism
see Evans (2013).

8 Concluding remarks

An essential component of informative inference for sampling theorists is the relevant

sampling distribution: it is not a separate assessment of performance, but part of

the necessary ingredients of informative inference. It is this feature that enables

sampling theory to have SLP violations (e.g., in significance testing contexts). Any

such SLP violation, according to Birnbaum’s argument, prevents adhering to both

SP and WCP. We have shown that SLP violations do not preclude WCP and SP.

The SLP does not refer to mixtures. But supposing that (2y
∗) is given,

Birnbaum asks us to consider that y∗ could also have resulted from a -irrelevant

mixture that selects between 1, 2. The WCP says this piece of information

should be irrelevant for computing the inference from (2y
∗), once given. That

is: Infr[(y
∗)] = Infr[y

∗]. It follows that if Infr1[x
∗] 6= Infr2 [y∗], the two re-

main unequal after the recognition that y∗ could have come from the mixture. What

5In addition to the authors cited in the manuscript, see especially comments by Savage, G.,

Cornfield, J., Bross, C., Pratt, J., Dempster, A., (1962) on Birnbaum. For later discussions,

see O. Barndorff-Nielsen (1975); J. Berger (1986); J. Berger and Wolpert (1988); Birnbaum

(1970a,b),Dawid (1986); Savage (1970), and references therein.
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was an SLP violation, remains one.

Given y∗, the WCP says do not Birnbaumize. One is free to do so, but not to
simultaneously claim to hold the WCP in relation to the given y∗, on pain of logical
contradiction. If one does choose to Birnbaumize, and to construct , admittedly,

the known outcome y∗ yields the same value of  as would x∗. Using the sample
space of  yields: [B]: Infr [x

∗] = Infr [y
∗]. This is based on the convex combina-

tion of the two experiments, and differs from both Infr1[x
∗] and Infr2[y

∗]. So again,
any SLP violation remains. Granted, if only the value of  is given, using Infr
may be appropriate. For then we are given only the disjunction: either (1x

∗) or
(2y

∗). In that case one is barred from using the implication from either individual
. A holder of WCP might put it this way: once ( z) is given, whether  arose

from a -irrelevant mixture, or was fixed all along, should not matter to the inference;

but whether a result was Birnbaumized or not should, and does, matter.

There is no logical contradiction in holding that if data are analyzed one way

(using the convex combination in ), a given answer results, and if analyzed another

way (via WCP) one gets quite a different result. One may consistently apply both

the  and the WCP directives to the same result, in the same experimental model,

only in cases where WCP makes no difference. To claim for any x∗, y∗, the WCP
never makes a difference, however, would assume that there can be no SLP violations,

which would make the argument circular6. Another possibility, would be to hold, as

Birnbaum ultimately did, that the SLP is “clearly plausible” (Birnbaum 1968, 301)

only in “the severely restricted case of a parameter space of just two points” where

these are predesignated (Birnbaum 1969, 128). But that is to relinquish the general

result.
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