CONTENTS

I. PROBABILITY AND INDUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. 1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>I. 2. Arguments</td>
<td>1</td>
</tr>
<tr>
<td>I. 3. Logic</td>
<td>4</td>
</tr>
<tr>
<td>I. 4. Inductive versus deductive logic</td>
<td>6</td>
</tr>
<tr>
<td>I. 5. The general and the specific</td>
<td>13</td>
</tr>
<tr>
<td>I. 6. Epistemic probability</td>
<td>15</td>
</tr>
<tr>
<td>I. 7. Probability and the problems of inductive logic</td>
<td>20</td>
</tr>
</tbody>
</table>

II. THE TRADITIONAL PROBLEM OF INDUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>II. 1. Introduction</td>
<td>24</td>
</tr>
<tr>
<td>II. 2. Hume's argument</td>
<td>24</td>
</tr>
<tr>
<td>II. 3. The inductive justification of induction</td>
<td>30</td>
</tr>
<tr>
<td>II. 4. The pragmatic justification of induction</td>
<td>41</td>
</tr>
<tr>
<td>II. 5. An attempted dissolution of the traditional problem of induction</td>
<td>46</td>
</tr>
<tr>
<td>II. 6. Summary</td>
<td>55</td>
</tr>
</tbody>
</table>

III. THE GOODMAN PARADOX AND THE NEW RIDDLE OF INDUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>III. 1. Introduction</td>
<td>57</td>
</tr>
<tr>
<td>III. 2. Regularities and projection</td>
<td>58</td>
</tr>
<tr>
<td>III. 3. The Goodman paradox</td>
<td>62</td>
</tr>
<tr>
<td>III. 4. The Goodman paradox, regularity, and the principle of the uniformity of nature</td>
<td>66</td>
</tr>
<tr>
<td>III. 5. Summary</td>
<td>74</td>
</tr>
</tbody>
</table>
V
THE PROBABILITY CALCULUS

V.1. INTRODUCTION. The theory of probability resulted from the cooperation of two eminent seventeenth-century mathematicians and a gambler. The gambler, Chevalier de Mere, had some theoretical problems with practical consequences at the dice tables. He took his problems to Blaise Pascal who in turn entered into correspondence with Pierre de Fermat, in order to discuss them. The mathematical theory of probability was born in the Pascal-Fermat correspondence.

We have used the word “probability” rather freely in the discussion so far, with only a rough, intuitive grasp of its meaning. In this chapter we will learn the mathematical rules that a quantity must satisfy in order to qualify as a probability. With that knowledge in hand, we will proceed in Chapter VI to examine the reasons for believing that epistemic and inductive probabilities should be probabilities in the mathematical sense.

V.2. PROBABILITY, ARGUMENTS, STATEMENTS, AND PROPERTIES. The word “probability” is used for a number of distinct concepts. Earlier I pointed out the difference between inductive probability, which applies to arguments, and epistemic probability, which applies to statements. There is yet another type of probability, which applies to properties. When we speak of the probability of throwing a “natural” in dice, or the probability of living to age 65, we are ascribing probabilities to properties. When we speak of the probability that John Q. Jones will live to age 65, or the probability that the next throw of the dice will come up a natural, we are ascribing probabilities to statements. Thus there are at least three different types of probability which apply to three different types of things: arguments, statements, and properties.

Luckily, there is a common core to these various concepts of probability: Each of these various types of probability obeys the rules of the mathematical theory of probability. Furthermore, the different types of probability are interrelated in other ways, some of which were brought out in the discussion of inductive and epistemic probability. In Chapter V it will be shown how these different concepts of probability put flesh on the skeleton of the mathematical theory of probability. Here, however, we shall restrict ourselves to developing the mathematical theory.

The mathematical theory is often called the probability calculus. In order to facilitate the framing of examples we shall develop the probability calculus as it applies to statements. But we shall see later how it can also accommodate arguments and properties.

Remember that the truth tables for “¬,” “&,” and “v” enable us to find out whether a complex statement is true or false if we know whether its simple constituent statements are true or false. However, truth tables tell us nothing about the truth or falsity of the simple constituent statements. In a similar manner, the rules of the probability calculus tell us how the probability of a complex statement is related to the probability of its simple constituent statements, but they do not tell us how to determine the probabilities of simple statements. The problem of determining the probability of simple statements (or properties or arguments) is a problem of inductive logic, but it is a problem that is not solved by the probability calculus.

Probability values assigned to complex statements range from 0 to 1. Although the probability calculus does not tell us how to determine the probabilities of simple statements, it does not assign the extreme values of 0 and 1 to special kinds of complex statements. In Section IV.3 we discussed complex statements that are true no matter what the facts are. These statements were called tautologies. Since a tautology is guaranteed to be true, no matter what the facts are, it is assigned the highest possible probability value.

Rule 1: If a statement is a tautology, then its probability is equal to 1.

Thus just as the complex statement $s\lor s$ is true no matter whether its simple constituent statement, s, is true or false, so its probability is 1 regardless of the probability of the simple constituent statement.

We also discussed another type of statement that is false no matter what the facts are. This type of statement, called the self-contradiction, is assigned the lowest possible probability value.

Rule 2: If a statement is a self-contradiction, then its probability is equal to 0.

Thus just as the complex statement $s\&\neg s$ is false no matter whether its
simple constituent statement, \(s \), is true or false, so its probability is 0 regardless of the simple constituent statement.

When two statements make the same factual claim, that is, when they are true in exactly the same circumstances, they are logically equivalent. Now if a statement that makes a factual claim has a certain probability, another statement that makes exactly the same claim in different words should be equally probable. The statement "My next throw of the dice will come up a natural" should have the same probability as "It is not the case that my next throw of the dice will not come up a natural." This fact is reflected in the following rule:

Rule 3: If two statements are logically equivalent, then they have the same probability.

By the truth table method it is easy to show that the simple statement \(p \) is logically equivalent to the complex statement that is its double negation, \(\sim \sim p \), since they are true in exactly the same cases.

<table>
<thead>
<tr>
<th>Case 1:</th>
<th>(p)</th>
<th>(\sim p)</th>
<th>(\sim \sim p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1:</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>Case 2:</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

Thus the simple statement "My next throw of the dice will come up a natural" has, according to Rule 3, the same probability as its double negation, "It is not the case that my next throw of the dice will not come up a natural."

The first two rules cover certain special cases. They tell us the probability of a complex statement if it is either a tautology or a contradiction. The third rule tells us how to find the probability of a complex contingent statement from its simple constituent statements, if that complex statement is logically equivalent to one of its simple constituent statements. But there are many complex contingent statements that are not logically equivalent to any of their simple constituent statements, and more rules shall be introduced to cover them. The next two sections present rules for each of the logical connectives.

Exercises:

Instead of writing "The probability of \(p \) is \(\frac{1}{4} \)," we shall write, for short "\(\Pr(p) = \frac{1}{4} \)." Now suppose that \(\Pr(p) = \frac{1}{4} \) and \(\Pr(q) = \frac{1}{4} \). Find the probabilities of the following complex statements, using Rules 1 through 3 and the method of truth tables:

1. \(p \vee p \)
2. \(q \land q \)
3. \(q \land \sim q \)
4. \(\sim (q \land \sim q) \)
5. \(\sim (p \vee \sim p) \)
6. \(\sim (p \vee q) \)
7. \(p \land (q \land \sim q) \)
8. \(q \land (p \vee \sim p) \)

V.3. DISJUNCTION AND NEGATION RULES. The probability of a disjunction \(pq \) is more easily calculated when its disjuncts, \(p \) and \(q \), are mutually exclusive or inconsistent with each other. In such a case the probability of the disjunction can be calculated from the probabilities of the disjuncts by means of the special disjunction rule. We shall use the notation introduced in the exercises on p. 132, writing "The probability of \(p \) is \(x \)" as: \(\Pr(p) = x \).

Rule 4: If \(p \) and \(q \) are mutually exclusive, then \(\Pr(pq) = \Pr(p) + \Pr(q) \).

For example, the statements "Socrates is both bald and wise" and "Socrates is neither bald nor wise" are mutually exclusive. Thus if the probability that Socrates is both bald and wise is \(\frac{1}{4} \) and the probability that Socrates is neither bald nor wise is \(\frac{1}{4} \), then the probability that Socrates is either both bald and wise or neither bald nor wise is \(\frac{1}{4} + \frac{1}{4} \), or \(\frac{1}{2} \).

We can do a little more with the special alternation rule in the following case: Suppose you are about to throw a single six-sided die and that each of the six outcomes is equally probable; that is:

\[
\Pr(\text{the die will come up a } 1) = \frac{1}{6} \\
\Pr(\text{the die will come up a } 2) = \frac{1}{6} \\
\Pr(\text{the die will come up a } 3) = \frac{1}{6} \\
\Pr(\text{the die will come up a } 4) = \frac{1}{6} \\
\Pr(\text{the die will come up a } 5) = \frac{1}{6} \\
\Pr(\text{the die will come up a } 6) = \frac{1}{6}
\]

Since the die can show only one face at a time, these six statements may be treated as being mutually exclusive.\(^1\) Thus the probability of getting

\(^1\) Actually the statements are not mutually exclusive in the logical sense. We cannot show that they are inconsistent with each other by the method of truth tables, and it is logically possible that the die might change shape upon being thrown so as to display two faces simultaneously. To treat this case rigorously, we would have to use the general disjunction rule, along with a battery of assumptions: \(\Pr(162) = 0, \Pr(263) = 0, \Pr(163) = 0 \), etc. However, we shall see that the result is the same as when we use the special disjunction rule, and treat these statements as if they were mutually exclusive.
V. THE PROBABILITY CALCULUS

a 1 or a 6 may be calculated by the special disjunction rule as follows:

\[\Pr(1v6) = \Pr(1) + \Pr(6) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3} \]

The probability of getting an even number may be calculated as

\[\Pr(\text{even}) = \Pr(2v4v6) = \Pr(2) + \Pr(4) + \Pr(6) \]
\[= \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2} \]

The probability of getting an even number that is greater than 3 may be calculated as

\[\Pr(\text{even greater than 3}) = \Pr(4v6) = \Pr(4) + \Pr(6) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3} \]

The probability of getting an even number or a 3 may be calculated as

\[\Pr(\text{even or 3}) = \Pr(2v4v6v3) = \frac{5}{6} = \frac{5}{6} \]

Finally, calculating the probability of getting either a 1, 2, 3, 4, 5, or 6 (that is, the probability that the die will show one face or another) gives \(\frac{5}{6} \) or 1.

We will now apply the special disjunction rule to a case of more general interest. It can be shown, by the method of truth tables, that any statement \(p \) is inconsistent with its negation, \(\neg p \). Since \(p \) and \(\neg p \) are therefore mutually exclusive, the special disjunction rule permits the conclusion that

\[\Pr(pv\neg p) = \Pr(p) + \Pr(\neg p) \]

But the statement \(pv\neg p \) is a tautology, so by Rule 1,

\[\Pr(pv\neg p) = 1 \]

Putting these two conclusions together gives

\[\Pr(p) + \Pr(\neg p) = 1 \]

If the quantity \(\Pr(p) \) is subtracted from both sides of the equation, the sides will remain equal, so we may conclude that

\[\Pr(\neg p) = 1 - \Pr(p) \]

This conclusion holds good for any statement, since any statement is inconsistent with its negation, and for any statement \(p \) its disjunction with its negation, \(pv\neg p \), is a tautology. This therefore establishes a general negation rule, which allows us to calculate the probability of a negation from the probability of its constituent statement:

Rule 5: \(\Pr(\neg p) = 1 - \Pr(p) \).

V. 3 DISJUNCTION AND NEGATION RULES

Suppose in the example using the die we wanted to know the probability of not getting a 3:

\[\Pr(\neg 3) = 1 - \Pr(3) = 1 - \frac{1}{6} = \frac{5}{6} \]

Note that we get the same answer as we would if we took the long road to solving the problem and confined ourselves to using the special disjunction rule:

\[\Pr(\neg 3) = \Pr(1v2v4v5v6) \]
\[= \Pr(1) + \Pr(2) + \Pr(4) + \Pr(5) + \Pr(6) \]
\[= \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{5}{6} \]

We shall apply the special disjunction rule one more time in order to establish another generally useful rule. For any two statements, \(p, q \), we can show by the truth table method that the complex statements \(p\&q \), \(p\&\neg q \), and \(\neg p\&q \) are inconsistent with each other. As shown below, there is no case in which two of them are true:

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(\neg p)</th>
<th>(\neg q)</th>
<th>(p&q)</th>
<th>(p&\neg q)</th>
<th>(\neg p&q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1:</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>Case 2:</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Case 3:</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Case 4:</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Since they are mutually exclusive, we can apply the special disjunction rule and conclude:

a. \(\Pr((p\&q)v(p\&\neg q)) = \Pr(p\&q) + \Pr(p\&\neg q) \)

b. \(\Pr((p\&q)v(\neg p\&q)) = \Pr(p\&q) + \Pr(\neg p\&q) \)

c. \(\Pr((p\&q)v(p\&\neg q)v(\neg p\&q)) = \Pr(p\&q) + \Pr(p\&\neg q) \)

But the complex statement \((p\&q)v(p\&\neg q) \) is logically equivalent to the simple statement \(p \), as is shown by the following truth table:

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(\neg p)</th>
<th>(\neg q)</th>
<th>(p&q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1:</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>Case 2:</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>Case 3:</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>Case 4:</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>
Since according to Rule 3 logically equivalent statements have the same probability, equation (a) may be rewritten as

\[a'. \ Pr(p) = Pr(p \& q) + Pr(p \& \neg q) \]

A similar truth table will show that the complex statement \((p \& q) \lor (\neg p \& q)\) is logically equivalent to the simple statement \(q\). Therefore equation (b) may be rewritten as

\[b'. \ Pr(q) = Pr(p \& q) + Pr(\neg p \& q) \]

Finally, a truth table will show that the complex statement \((p \& q) \lor (p \& \neg q) \lor (\neg p \& q)\) is logically equivalent to the complex statement \(p \lor q\), which enables us to rewrite equation (c) as

\[c'. \ Pr(p \lor q) = Pr(p \& q) + Pr(p \& \neg q) + Pr(\neg p \& q) \]

Now let us add equations \((a')\) and \((b')\) together to get

\[d. \ Pr(p) + Pr(q) = 2 \ Pr(p \& q) + Pr(p \& \neg q) + Pr(\neg p \& q) \]

If we subtract the quantity \(Pr(p \& q)\) from both sides of the preceding equation, we get

\[d'. \ Pr(p) + Pr(q) - Pr(p \& q) = Pr(p \& q) + Pr(p \& \neg q) + Pr(\neg p \& q) \]

If equation \((d')\) is compared with equation \((c')\) we see that \(Pr(p \lor q)\) is equal to the same thing as \(Pr(p) + Pr(q) - Pr(p \& q)\). This establishes a general disjunction rule that is good for all disjunctions, whether the disjuncts are mutually exclusive or not:

Rule 6: \(Pr(p \lor q) = Pr(p) + Pr(q) - Pr(p \& q)\).

If some of the algebra used to establish the general disjunction rule has left you behind, the following diagram may help to make the reasoning clear:

\[
\begin{array}{c}
\text{Pr}(p) \\
\downarrow \\
\text{Pr}(p \& \neg q) \\
\downarrow \\
\text{Pr}(p \lor q) \\
\downarrow \\
\text{Pr}(q) \\
\downarrow \\
\text{Pr}(p \& q) \\
\downarrow \\
\text{Pr}(\neg p \& q) \\
\end{array}
\]

When \(Pr(p)\) is added to \(Pr(q)\), then \(Pr(p \& q)\) is counted twice. But to get \(Pr(p \lor q)\), it should be counted only once. Thus to get \(Pr(p \lor q)\), we add

\(\Pr(p)\) and \(\Pr(q)\) and then subtract \(\Pr(p \& q)\) to make up for having counted it twice. In the case in which \(p\) and \(q\) are mutually exclusive, this makes no difference, because when \(p\) and \(q\) are mutually exclusive, \(\Pr(p \& q) = 0\). No matter how many times 0 is counted, we will always get the same result. For example, by the general disjunction rule, \(Pr(pv \neg p) = Pr(p) + Pr(\neg p) - Pr(p \& \neg p)\). But the statement \(p \& \neg p\) is a self-contradiction, so its probability is zero. Thus we get the same result as if we had used the special disjunction rule. Counting \(Pr(p \& q)\) twice does make a difference when \(p\) and \(q\) are not mutually exclusive. Suppose we use the general disjunction rule to calculate the probability of the complex statement \(pvp\):

\[
\Pr(pvp) = \Pr(p) + \Pr(p) - \Pr(p \& p) = \Pr(p) + \Pr(p) - \Pr(p \& q) = \Pr(p) + \Pr(p) - \Pr(p \& q) = \Pr(p) + \Pr(p) - \Pr(p) = \Pr(p)
\]

But since the complex statement \(p \& p\) is logically equivalent to the simple statement \(p\), \(Pr(p \& p) = Pr(p)\). So we get

\[
\Pr(pvp) = \Pr(p) + \Pr(p) - \Pr(p) = \Pr(p)
\]

We know this is the correct answer, because the complex statement \(pvp\) is also logically equivalent to the simple statement \(p\).

The example with the die shall be used to give one more illustration of the use of the general disjunction rule. Suppose that we want to know the probability that the die will come up an even number or a number less than 3. There is a way to calculate this probability using only the special disjunction rule:

\[
\Pr(\text{even } v \text{ less than } 3) = \Pr(1, 2, 4, 6) = \Pr(1) + \Pr(2) + \Pr(4) + \Pr(6) = \frac{2}{6} = \frac{1}{3}
\]

We may use the special disjunction rule because the outcomes 1, 2, 4, and 6 are mutually exclusive. However, the outcomes “even” and “less than 3” are not mutually exclusive, since the die might come up 2. Thus we may apply the general disjunction rule as follows:

\[
\Pr(\text{even } v \text{ less than } 3) = \Pr(\text{even}) + \Pr(\text{less than } 3) - \Pr(\text{even } \& \text{ less than } 3)
\]

Now we may calculate \(\Pr(\text{even})\) as \(Pr(1, 2, 4, 6)\) by the special disjunction rule; it is equal to \(\frac{2}{6}\). We may calculate \(\Pr(\text{less than } 3)\) as \(Pr(1, 2)\) by the special disjunction rule; it is equal to \(\frac{3}{6}\). And we may calculate \(\Pr(\text{even } \& \text{ less than } 3)\) as \(Pr(2)\), which is equal to \(\frac{1}{6}\). So, by this method,
The role of the subtraction term can be seen clearly in this example. What we have done is to calculate \(\Pr(\text{even } v \leq 3) \) as

\[
\Pr(2v4v6) + \Pr(1v2) - \Pr(2)
\]

so the subtraction term compensates for adding \(\Pr(2) \) twice when we add \(\Pr(\text{even}) \) and \(\Pr(\text{less than } 3) \). In this example, use of the general disjunction rule was the long way of solving the problem. But in some cases it is necessary to use the general disjunction rule. Suppose you are told that

\[
\Pr(p) = \frac{1}{3}, \\
\Pr(q) = \frac{1}{3}, \\
\Pr(p\&q) = \frac{1}{4}
\]

You are asked to calculate \(\Pr(p\&q) \). Now you cannot use the special disjunction rule since you know that \(p \) and \(q \) are not mutually exclusive. If they were, \(\Pr(p\&q) \) would be 0, and you are told that it is \(\frac{1}{4} \). Therefore, you must use the general disjunction rule in the following way:

\[
\Pr(p\&q) = \Pr(p) + \Pr(q) - \Pr(p\&q)
\]

\[
= \frac{1}{3} + \frac{1}{3} - \frac{1}{4} = \frac{2}{12}
\]

In Section IV.12, we compared the rules of the probability calculus to the way in which the truth tables for the logical connectives relate the truth or falsity of a complex statement to the truth or falsity of its simple constituent statements. We are now at the point where we must qualify this comparison. We can always determine the truth or falsity of a complex statement if we know whether its simple constituent statements are true or false. But we cannot always calculate the probability of a complex statement from the probabilities of its simple constituent statements. Sometimes, as in the example above, in order to calculate the probability of the complex statement \(p\&q \), we need not only know the probabilities of its simple constituent statements, \(p \) and \(q \), but we, as well, need to know the probability of another complex statement, \(p\&q \). We shall discuss the rules that govern the probabilities of such conjunctions in the next section. However, we shall find that it is not always possible to calculate the probability of a conjunction simply from the probabilities of its constituent statements.

Exercises:

1. Suppose you have an ordinary deck of 52 playing cards. You are to draw one card. Assume that each card has a probability of \(\frac{1}{52} \) of being drawn. What is the probability that you will draw:
 - a. The ace of spades?
 - b. The queen of hearts?
 - c. The ace of spades or the queen of hearts?
 - d. An ace?
 - e. A heart?
 - f. A face card (king, queen, or jack)?
 - g. A card that is not a face card?
 - h. An ace or a spade?
 - i. A queen or a heart?
 - j. A queen or a non-spade?

2. \(\Pr(p) = \frac{1}{3}, \Pr(q) = \frac{1}{3}, \Pr(p\&q) = \frac{1}{9} \). What is \(\Pr(p\&q) \)?

3. \(\Pr(t) = \frac{1}{5}, \Pr(s) = \frac{1}{4}, \Pr(rvst) = \frac{2}{5} \). What is \(\Pr(r\&s) \)?

4. \(\Pr(u) = \frac{1}{3}, \Pr(t) = \frac{3}{4}, \Pr(u\&\sim t) = \frac{1}{5} \). What is \(\Pr(u\&\sim t) \)?

V.4 Conjunction Rules and Conditional Probability

Before the rules that govern the probability of conjunctions are discussed, it is necessary to introduce the notion of conditional probability. We may write \(\Pr(\text{q given } p) \) as the probability of \(\text{q} \) on the condition that \(p \). This probability may or may not be different from \(\Pr(q) \). We shall deal with the concept of conditional probability on the intuitive level before a precise definition for it is introduced.

In the example with the dice, we found that the probability of throwing an even number was \(\frac{1}{2} \). However, the probability of getting an even number given that a 2 or a 4 is thrown is not \(\frac{1}{2} \) but 1. And the probability of casting an even number given that a 1 or a 3 is thrown is 0. To take a little more complicated example, suppose that the die remains unchanged and you are to bet on whether it will come up even, with a special agreement that if it comes up 5 all bets will be off and it will be thrown again. In such a situation you would be interested in the probability that it will come up even given that it will be either a 1, 2, 3, 4, or 6. This probability should be greater than \(\frac{1}{2} \) since the condition excludes one of the ways in which the die could come up odd. It is--in fact, \(\frac{3}{5} \). Thus the probabilities of "even," given three different conditions, are each different from the probability of "even" by itself:

- a. \(\Pr(\text{even}) = \frac{1}{2} \)
V. 4 Conjunctive Rules

There are other cases where the knowledge that \(p \) is true may be completely irrelevant to the probability to be assigned to \(q \). For example, it was said that the probability that the next throw of the die will come up even is \(\frac{1}{2} \). We could say that the probability that the next throw of the die will come up even, given that the President of the United States sneezes simultaneously with our throw, is still \(\frac{1}{2} \). The President's sneeze is irrelevant to the probability assigned to "even." Thus the two statements "The next throw of the die will come up even" and "The President of the United States will sneeze simultaneously with the next throw of the die" are independent.

We can now give substance to the intuitive notions of conditional probability and independence by defining them in terms of pure statement probabilities. First we will define conditional probability:

\[\text{Definition 12: Conditional probability:} \]
\[\Pr(q \text{ given } p) = \frac{\Pr(p \& q)}{\Pr(p)} \]

Let us see how this definition works out in the example of the die:

\[\begin{align*}
b. & \quad \Pr(\text{even given } 2v4) = \frac{\Pr(\text{even} \& \text{2v4})}{\Pr(2v4)} = \frac{\Pr(2v4)}{\Pr(2v4)} = \frac{1}{6} \\
c. & \quad \Pr(\text{even given } 1v3) = \frac{\Pr(\text{even} \& \text{1v3})}{\Pr(1v3)} = \frac{0}{1} = 0 \\
d. & \quad \Pr(\text{even given } 1v2v3v4v6) = \frac{\Pr(\text{even} \& \text{1v2v3v4v6})}{\Pr(1v2v3v4v6)} \\
& \quad \quad \quad = \frac{\Pr(2v4v6)}{\Pr(1v2v3v4v6)} = \frac{\frac{3}{5}}{\frac{2}{5}} = \frac{3}{2} \]

Notice that the conditional probabilities computed by using the definition accord with the intuitive judgments as to conditional probabilities in the die example. We may test the definition in another way. Consider the special case of \(\Pr(q \text{ given } p) \), where \(p \) is a tautology and \(q \) is a contingent statement. Since a tautology makes no factual claim, we would not expect

\[^2 \text{We must make one qualification to this statement. When } p \text{ is a self-contradiction, then for any statement } q \text{ there is a deductively valid argument from } p \text{ to } q \text{ and a deductively valid argument from } p \text{ to } \neg q. \text{ In such a case, } \Pr(q \text{ given } p) \text{ has no value.} \]

\[^3 \text{This type of independence is called probabilistic or stochastic independence. It should not be confused with the mutual logical independence discussed in deductive logic. Stochastic independence of two statements is neither a necessary nor a sufficient condition for their mutual logical independence.} \]

\[^4 \text{When } \Pr(p) = 0 \text{ the quotient is not defined. In this case there is no } \Pr(q \text{ given } p). \]
knowledge of its truth to influence the probability that we would assign to the contingent statement, \(q \). The probability that the die will come up even given that it will come up either even or odd should be simply the probability that it will come up even. In general, if we let \(T \) stand for an arbitrary tautology, we should expect \(\Pr(q \text{ given } T) \) to be equal to \(\Pr(q) \). Let us work out \(\Pr(q \text{ given } T) \), using the definition of conditional probability:

\[
\Pr(q \text{ given } T) = \frac{\Pr(T \& q)}{\Pr(T)}
\]

But the probability of a tautology is always equal to 1. This gives

\[
\Pr(q \text{ given } T) = \Pr(T \& q)
\]

When \(T \) is a tautology and \(q \) is any statement whatsoever, the complex statement \(T \& q \) is logically equivalent to the simple statement \(q \). This can always be shown by truth tables. Since logically equivalent statements have the same probability, \(\Pr(q \text{ given } T) = \Pr(q) \).\(^6\) Again the definition of conditional probability gives the expected result.

Now that conditional probability has been defined, that concept can be used to define independence:

Definition 13: Independence: Two statements \(p \) and \(q \) are independent if and only if \(\Pr(q \text{ given } p) = \Pr(q) \).

We talk of two statements \(p \) and \(q \) being independent, rather than \(p \) being independent of \(q \) and \(q \) being independent of \(p \). We can do this because we can prove that \(\Pr(q \text{ given } p) = \Pr(q) \) if and only if \(\Pr(p \text{ given } q) = \Pr(p) \). If \(\Pr(q \text{ given } p) = \Pr(q) \), then, by the definition of conditional probability,

\[
\frac{\Pr(p \& q)}{\Pr(p)} = \Pr(q)
\]

Multiplying both sides of the equation by \(\Pr(p) \) and dividing both sides by \(\Pr(q) \), we have

\[
\Pr(p \& q) = \Pr(p) \times \Pr(q)
\]

\(\Box\)

V. 4 **Conjunction Rules**

\[\frac{\Pr(p \& q)}{\Pr(q)} = \Pr(p)\]

But by the definition of conditional probability, this means \(\Pr(p \text{ given } q) = \Pr(p) \).

This proof only works if neither of the two statements has 0 probability. Otherwise one of the relevant quotients would not be defined. To take care of this eventuality, we may add an additional clause to the definition and say that two statements are also independent if at least one of them has probability 0. It is important to realize the difference between independence and mutual exclusiveness. The statement about the outcome of the throw of the die and the statement about the President's sneeze are independent, but they are not mutually exclusive. They can very well be true together. On the other hand, the statements "The next throw of the die will come up an even number" and "The next throw of the die will come up a 5" are mutually exclusive, but they are not independent. \(\Pr(\text{even}) = \frac{1}{2} \), but \(\Pr(\text{even given 5}) = 0 \). \(\Pr(5) = \frac{1}{6} \), but \(\Pr(5 \text{ given even}) = 0 \). In general, if \(p \) and \(q \) are mutually exclusive they are not independent, and if they are independent they are not mutually exclusive.\(^7\)

Having specified the definitions of conditional probability and independence, the rules for conjunctions can now be introduced. The general conjunction rule follows directly from the definition of conditional probability:

Rule 7: \(\Pr(p \& q) = \Pr(p) \times \Pr(q \text{ given } p) \).

The proof is simple. Take the definition of conditional probability:

\[
\Pr(q \text{ given } p) = \frac{\Pr(p \& q)}{\Pr(p)}
\]

Multiply both sides of the equation by \(\Pr(p) \) to get

\[
\Pr(p) \times \Pr(q \text{ given } p) = \Pr(p \& q)
\]

which is the general conjunction rule. Since, when \(p \) and \(q \) are independent, \(\Pr(q \text{ given } p) = \Pr(q) \), we may substitute \(\Pr(q) \) for \(\Pr(q \text{ given } p) \) in the general conjunction rule, thus obtaining

\[
\Pr(p) \times \Pr(q) = \Pr(p \& q)
\]

\(\Box\)

\(\text{\textsuperscript7} \) The exception is when at least one of the statements is self-contradiction and thus has probability 0.
Of course, the substitution may only be made in the special case when \(p \) and \(q \) are independent. This result constitutes the **special conjunction rule**:

Rule 8: If \(p \) and \(q \) are independent, then \(\Pr(p \& q) = \Pr(p) \times \Pr(q) \).

The general conjunction rule is more basic than the special conjunction rule. But since the special conjunction rule is simpler, its application will be illustrated first. Suppose that two dice are thrown simultaneously. The basic probabilities are as follows:

<table>
<thead>
<tr>
<th>Die A</th>
<th>Die B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Pr(1) = \frac{1}{6})</td>
<td>(\Pr(1) = \frac{1}{6})</td>
</tr>
<tr>
<td>(\Pr(2) = \frac{1}{6})</td>
<td>(\Pr(2) = \frac{1}{6})</td>
</tr>
<tr>
<td>(\Pr(3) = \frac{1}{6})</td>
<td>(\Pr(3) = \frac{1}{6})</td>
</tr>
<tr>
<td>(\Pr(4) = \frac{1}{6})</td>
<td>(\Pr(4) = \frac{1}{6})</td>
</tr>
<tr>
<td>(\Pr(5) = \frac{1}{6})</td>
<td>(\Pr(5) = \frac{1}{6})</td>
</tr>
<tr>
<td>(\Pr(6) = \frac{1}{6})</td>
<td>(\Pr(6) = \frac{1}{6})</td>
</tr>
</tbody>
</table>

Since the face shown by die \(A \) presumably does not influence the face shown by die \(B \), or vice versa, it shall be assumed that all statements claiming various outcomes for die \(A \) are independent of all the statements claiming various outcomes for die \(B \). That is, the statements “Die \(A \) will come up a 3” and “Die \(B \) will come up a 5” are independent, as are the statements “Die \(A \) will come up a 6” and “Die \(B \) will come up a 6.” The statements “Die \(A \) will come up a 5” and “Die \(A \) will come up a 3” are not independent; they are mutually exclusive (when made in regard to the same throw).

Now suppose we wish to calculate the probability of throwing a 1 on die \(A \) and a 6 on die \(B \). The special conjunction rule can now be used:

\[
\Pr(1 \text{ on } A \& 6 \text{ on } B) = \Pr(1 \text{ on } A) \times \Pr(6 \text{ on } B)
\]

\[
= \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}
\]

In the same way, the probability of each of the 36 possible combinations of results of die \(A \) and die \(B \) may be calculated as \(\frac{1}{36} \), as shown in Table 1. Note that each of the cases in the table is mutually exclusive of each other case. Thus by the special alternation rule, the probability of case 1 v case 3 is equal to the probability of case 1 plus the probability of case 3.

<table>
<thead>
<tr>
<th>Case</th>
<th>Possible results when throwing two dice</th>
<th>Die A</th>
<th>Die B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Suppose now that we wish to calculate the probability that the dice will come up showing a 1 or a 6. There are two ways this can happen: a 1 on die \(A \) and a 6 on die \(B \) (case 6), or a 6 on die \(A \) and a 1 on die \(B \) (case 31). The probability of this combination appearing may be calculated as follows:

\[
\Pr(1 \text{ and } 6) = \Pr([1 \text{ on } A \& 6 \text{ on } B] \lor [1 \text{ on } B \& 6 \text{ on } A])
\]

Since the cases are mutually exclusive, the special disjunction rule may be used to get

\[
\Pr([1 \text{ on } A \& 6 \text{ on } B] \lor [1 \text{ on } B \& 6 \text{ on } A]) = \Pr(1 \text{ on } A \& 6 \text{ on } B) + \Pr(1 \text{ on } B \& 6 \text{ on } A)
\]

But it has already been shown, by the special conjunction rule, that

\[
\Pr(1 \text{ on } A \& 6 \text{ on } B) = \frac{1}{36}
\]

\[
\Pr(1 \text{ on } B \& 6 \text{ on } A) = \frac{1}{36}
\]

so the answer is \(\frac{1}{36} + \frac{1}{36} = \frac{1}{18} \).

The same sort of reasoning can be used to solve more complicated problems. Suppose we want to know the probability that the sum of spots
V. THE PROBABILITY CALCULUS

V. 4 CONJUNCTION RULES

To solve this problem we must find the probability of the conjunction Pr(red on 1 & red on 2). We will first find Pr(red on 1). We will designate each of the gumdrops by a letter: A, B, C, D, E, F, G, H, I, J. We know that we will draw one of these on the first draw, so

\[
Pr(A \text{ on } 1) \lor Pr(B \text{ on } 1) \lor \ldots \lor Pr(J \text{ on } 1) = 1
\]

Now, by the special disjunction rule,

\[
Pr(A \text{ on } 1) + Pr(B \text{ on } 1) + Pr(C \text{ on } 1) + \ldots + Pr(J \text{ on } 1) = 1
\]

Since each of the gumdrops has an equal chance of being drawn, and there are 10 gumdrops, therefore

\[
Pr(A \text{ on } 1) = \frac{1}{10}
\]

\[
Pr(B \text{ on } 1) = \frac{1}{10}
\]

\[
\vdots
\]

\[
Pr(J \text{ on } 1) = \frac{1}{10}
\]

We said that there were five red ones. We will use the letters A, B, C, D, and E to designate the red gumdrops and the remaining letters to designate the black ones. By the special disjunction rule, the probability of getting a red gumdrop on draw 1 is

\[
Pr(A \text{ on } 1 \lor B \text{ on } 1 \lor C \text{ on } 1 \lor D \text{ on } 1 \lor E \text{ on } 1) = Pr(A \text{ on } 1) + Pr(B \text{ on } 1) + Pr(C \text{ on } 1) + Pr(D \text{ on } 1) + Pr(E \text{ on } 1)
\]

\[
= \frac{5}{10} = \frac{1}{2}
\]

We shall have to use the general conjunction rule to find Pr(red on 1 & red on 2), since the statements “A red gumdrop will be drawn the first time” and “A red gumdrop will be drawn the second time” are not independent. If a red gumdrop is drawn the first time, this will leave four red and five black gumdrops in the bag with equal chances of being drawn on the second draw. But if a black gumdrop is drawn the first time, this will leave five red and four black gumdrops awaiting the second draw. Thus the knowledge that a red one is drawn the first time will influence the probability we assign to a red one being drawn the second time, and the two statements are not independent. Applying the general conjunction rule, we get

\[
Pr(\text{red on } 1 \& \text{red on } 2) = Pr(\text{red on } 1) \times Pr(\text{red on } 2 \text{ given red on } 1)
\]

We have already found Pr(red on 1). Now we must calculate Pr(red on 2 given red on 1). Given that we draw a red gumdrop on the first draw, there will be nine gumdrops remaining: four red and five black. We must
V. THE PROBABILITY CALCULUS

draw one of them, and they each have an equal chance of being drawn. By reasoning similar to that used above, each has a probability of \(\frac{1}{2} \) of being drawn, and the probability of drawing a red one is \(\frac{1}{6} \). Therefore

\[
\Pr(\text{red on 2 given red on 1}) = \frac{1}{6}
\]

We can now complete our calculations:

\[
\Pr(\text{red on 1 & red on 2}) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}
\]

We can calculate \(\Pr(\text{black on 1 & red on 2}) \) in the same way:

\[
\Pr(\text{black on 1}) = \frac{1}{2}
\]

\[
\Pr(\text{red on 2 given black on 1}) = \frac{1}{3}
\]

Therefore by the general conjunction rule,

\[
\Pr(\text{black on 1 & red on 2}) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}
\]

At this point the question arises as to what the \(\Pr(\text{red on 2}) \) is. We know \(\Pr(\text{red on 2 given red on 1}) = \frac{1}{6} \). We know \(\Pr(\text{red on 2 given black on 1}) = \frac{1}{3} \). But what we want to know now is the probability of getting a red gun drop on the second draw before we have made the first draw. We can get the answer if we realize that \(\text{red on 2 is logically equivalent to (red on 1 & red on 2) v (not-red on 1 & red on 2)} \)

Remember that the simple statement \(q \) is logically equivalent to the complex statement \((p \& q) \lor (\neg p \& q)\). Therefore

\[
\Pr(\text{red on 2}) = \Pr[(\text{red on 1 & red on 2}) \lor (\text{not-red on 1 & red on 2})]
\]

By the special disjunction rule,

\[
\Pr(\text{red on 2}) = \Pr(\text{red on 1 & red on 2}) + \Pr(\text{red on 1 & red on 2})
\]

We have calculated \(\Pr(\text{red on 1 & red on 2}) = \frac{1}{36} \). We have also calculated

\[
\Pr(\text{not-red on 1 & red on 2}) = \Pr(\text{black on 1 & red on 2}) = \frac{1}{18}
\]

Therefore

\[
\Pr(\text{red on 2}) = \frac{1}{36} + \frac{1}{18} = \frac{1}{6} + \frac{1}{18} = \frac{1}{12}
\]

The same sort of applications of conditional probability and the general conjunction rule would apply to card games where the cards that have been played are placed in a discard pile rather than being returned to the deck. Such considerations are treated very carefully in manuals on poker and blackjack. In fact, some gambling houses have resorted to using a new deck for each hand of blackjack in order to keep astute students of probability from gaining an advantage over the house.

Exercises:

1. \(\Pr(p) = \frac{1}{2}, \Pr(q) = \frac{1}{4}, p \text{ and } q \) are independent.
 a. What is \(\Pr(p \& q) \)?
 b. Are \(p \) and \(q \) mutually exclusive?
 c. What is \(\Pr(p \lor q) \)?

2. Suppose two dice are rolled, as in the example above.
 a. What is the probability of both dice showing a 1 (“snake-eyes”)?
 b. What is the probability of both dice showing a 6 (“boxes”)?
 c. What is the probability that the total number of spots showing on both dice will be either 7 or 11 (“a natural”)?

3. A coin is flipped three times. Assume that on each toss \(\Pr(\text{heads}) = \frac{1}{2} \) and \(\Pr(\text{tails}) = \frac{1}{2} \). Assume that the tosses are independent.
 a. What is \(\Pr(3 \text{ heads}) \)?
 b. What is \(\Pr(2 \text{ heads and 1 tail}) \)?
 c. What is \(\Pr(1 \text{ head and 2 tails}) \)?
 d. What is \(\Pr(\text{head on toss 1 & tail on toss 2 & head on toss 3}) \)?
 e. What is \(\Pr(\text{at least 1 tail}) \)?
 f. What is \(\Pr(\text{no heads}) \)?
 g. What is \(\Pr(\text{either 3 heads or 3 tails}) \)?

4. Suppose you have an ordinary deck of 52 cards. A card is drawn and is not replaced, then another card is drawn. Assume that on each draw each of the cards then in the deck has an equal chance of being drawn.
 a. What is \(\Pr(\text{ace on draw 1}) \)?
 b. What is \(\Pr(\text{10 on draw 2 given ace on draw 1}) \)?
 c. What is \(\Pr(\text{ace on draw 1 & 10 on draw 2}) \)?
 d. What is \(\Pr(\text{10 on draw 1 & ace on draw 2}) \)?
 e. What is \(\Pr(\text{an ace and a 10}) \)?
 f. What is \(\Pr(2 \text{ aces}) \)?

5. The probability that George will study for the test is \(\frac{1}{3} \). The probability that he will pass the test given that he studies is \(\frac{2}{3} \). The probability that he will pass the test given that he does not study is \(\frac{1}{2} \). What is the probability that George will pass the test? Hint: The simple statement “George will pass the test” is logically equivalent to the complex statement “Either George will study and pass the test or George will not study and pass the test.”

V.5. EXPECTED VALUE OF A GAMBLE. The attractiveness of a wager depends not only on the probabilities involved, but also on the odds given. The probability of getting a head and a tail on two independ-
ent tosses of a fair coin is \(\frac{1}{2} \), while the probability of getting two heads is only \(\frac{1}{4} \). But if someone were to offer either to bet me even money that I will not get a head and a tail or give 100 to 1 odds against my getting two heads, I would be well advised to take the second wager. The probability that I will win the second wager is less, but this is more than compensated for by the fact that if I win, I will win a great deal, and if I lose, I will lose much less. The attractiveness of a wager can be measured by calculating its expected value. To calculate the expected value of a gamble, first list all the possible outcomes, along with their probabilities and the amount won in each case. A loss is listed as a negative amount. Then for each outcome multiply the probability by the amount won or lost. Finally, add these products to obtain the expected value. To illustrate, suppose someone bets me 10 dollars that I will not get a head and a tail on two tosses of a fair coin. The expected value of this wager for me can be calculated as follows:

<table>
<thead>
<tr>
<th>Possible outcomes</th>
<th>Probability</th>
<th>Gain</th>
<th>Probability × Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toss 1</td>
<td>Toss 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>(\frac{1}{2})</td>
<td>-10</td>
</tr>
<tr>
<td>H</td>
<td>T</td>
<td>(\frac{1}{4})</td>
<td>10</td>
</tr>
<tr>
<td>T</td>
<td>H</td>
<td>(\frac{1}{4})</td>
<td>-10</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>(\frac{1}{4})</td>
<td>-1</td>
</tr>
</tbody>
</table>

Expected value: $0.00

Thus the expected value of the wager for me is $0, and since my opponent wins what I lose and loses what I win, the expected value for him is also $0. Such a wager is called a *fair bet*. Now let us calculate the expected value for me of a wager where my opponent will give me 100 dollars if I get two heads, and I will give him one dollar if I do not.

<table>
<thead>
<tr>
<th>Possible outcomes</th>
<th>Probability</th>
<th>Gain</th>
<th>Probability × Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toss 1</td>
<td>Toss 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>(\frac{1}{4})</td>
<td>$100</td>
</tr>
<tr>
<td>H</td>
<td>T</td>
<td>(\frac{1}{4})</td>
<td>-1</td>
</tr>
<tr>
<td>T</td>
<td>H</td>
<td>(\frac{1}{4})</td>
<td>-1</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>(\frac{1}{4})</td>
<td>-1</td>
</tr>
</tbody>
</table>

Expected value: $24.25

The expected value of this wager for me is $24.25. Since my opponent loses what I win, the expected value for him is $-24.25. This is not a fair bet, since it is favorable to me and unfavorable to him.

The procedure for calculating expected value and the rationale behind it are clear, but let us try to attach some meaning to the numerical answer. This can be done in the following way. Suppose that I make the foregoing wager many times. And suppose that over these many times the distribution of results corresponds to the probabilities; that is, I get two heads one-fourth of the time; a head and then a tail one-fourth of the time; a tail and then a head one-fourth of the time; and two tails one-fourth of the time. Then the expected value will be equal to my average winnings on a wager (that is, my total winnings divided by the number of wagers I have made).

I said that expected value was a measure of the attractiveness of a wager. Generally, it seems reasonable to accept a wager with a positive expected gain and reject a wager with a negative expected gain. Furthermore, if you are offered a choice of wagers, it seems reasonable to choose the wager with the highest expected value. These conclusions, however, are oversimplifications. They assume that there is no positive or negative value associated with risk itself, and that gains or losses of equal amounts of money represent gains or losses of equal amount of value to the individual involved. Let us examine the first assumption.

Suppose that you are compelled to choose an even-money wager either for 1 dollar or for 100 dollars. The expected value of both wagers is 0. But if you wish to avoid risks as much as possible, you would choose the smaller wager. You would, then, assign a negative value to risk itself. However, if you enjoy taking larger risks for their own sake, you would choose the larger wager. Thus although expected value is a major factor in determining the attractiveness of wagers, it is not the only factor. The positive or negative values assigned to the magnitude of the risk itself must also be taken into account.

We make a second assumption when we calculate expected value in terms of money. We assume that gains or losses of equal amounts of money represent gains or losses of equal amounts of value to the individual involved. In the language of the economist this is said to be the assumption that money has a constant marginal utility. This assumption is quite often false. For a poor man, the loss of 1000 dollars might mean he would starve, while the gain of 1000 dollars might mean he would merely live somewhat more comfortably. In this situation, the real loss accompanying a monetary loss of 1000 dollars is much greater than the
real gain accompanying a monetary gain of 1000 dollars. A man in these circumstances would be foolish to accept an even money bet of 1000 dollars on the flip of a coin. In terms of money, the wager has an expected value of 0. But in terms of real value, the wager has a negative expected value.

Suppose you are in a part of the city far from home. You have lost your wallet and only have a quarter in change. Since the bus fare home is 35 cents, it looks as though you will have to walk. Now someone offers to flip you for a dime. If you win, you can ride home. If you lose, you are hardly any worse off than before. Thus although the expected value of the wager in monetary terms is 0, in terms of real value, the wager has a positive expected value. In assessing the attractiveness of wagers by calculating their expected value, we must always be careful to see whether the monetary gains and losses accurately mirror the real gains and losses to the individual involved.

Exercises:

1. What is the expected value of the following gamble? You are to roll a pair of dice. If the dice come up a natural, you win 10 dollars. If the dice come up snake-eyes or boxcars, you lose 20 dollars. Otherwise the bet is off.

2. What is the expected value of the following gamble? You are to flip a fair coin. If it comes up heads you win one dollar, and the wager is over. If it comes up tails you lose one dollar, but you flip again for two dollars. If the coin comes up heads this time you win two dollars. If it comes up tails you lose two dollars, but flip again for four dollars. If it comes up heads you win four dollars. If it comes up tails you lose four dollars. But in either case the wager is over.

 Hint: The possible outcomes are:

<table>
<thead>
<tr>
<th>Toss 1</th>
<th>Toss 2</th>
<th>Toss 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>T</td>
<td>H</td>
<td>None</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>H</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

3. Suppose you extended the doubling strategy of Exercise 2 to four tosses. Would this change the expected value?

4. Suppose that you tripled your stakes instead of doubling them. Would this change the expected value?

5. Suppose that you have just enough money to buy needed medicine for yourself or your family. Someone offers to bet you on the flip of a fair coin. If it comes up heads, he will give you 10 dollars. If it comes up tails, you will give him five dollars. In these circumstances it would be unreasonable for you to accept this normally attractive wager. Why?

V.6. RATIONAL DECISION MAKING AND PROBABILITY AS A GUIDE TO LIFE. We have said that rational human decisions are based on probabilities, and that each decision is in effect a wager with nature. Of course, this is a metaphor rather than a literal statement. We do not bet with nature in the ordinary sense of gambling. Nature is not an opponent, pitted against us, who stands to gain what we lose. And what we risk on our decisions is often less tangible and easily measured than money. But the fact remains that in our decisions we do risk things of value to us and that the rationality of the course of action decided upon depends on the probability that it will accomplish our aims. In line with these observations, we can construct an ideal model of rational decision making which uses the notion of expected value.

Let us suppose that in an ideal choice situation you are confronted with several mutually exclusive courses of action. You must decide which one of these alternative courses of action to follow. Your choice of a course of action may influence what will happen to you without determining what will happen to you. Generally, there are other factors at work besides your choice of a course of action. For instance, choosing to study for the test may not guarantee that you will pass it, but the probability that you will pass it given that you study may be greater than the probability that you will pass given that you do not study. Associated with each course of action is a range of possible consequences, whose probability is influenced by the choice of that course of action. The situation is summarized in Table 2. The expected value of each course of action in the table can be found by multiplying each of the probabilities of the consequences given the choice of that course of action by the value of that consequence, and then taking the sum of these products. In the absence of any liking or distaste for risk itself, the reasonable thing to do is to choose the course of action that has the highest expected value.

Let us see how this rule for rational decision making works in a simple example.

Suppose you are to guess whether the queen is over 40 or not. If you guess correctly, you will be given 1000 dollars. If you guess that the queen is either 40 or younger, and she is in fact over 40, you will win nothing and lose nothing. If you guess that the queen is over 40, and she is in
fact 40 or younger, she will have your tongue cut out. You value your
tongue highly, say at one million dollars. The epistemic probability that
the queen is over 40, on the basis of all the evidence available to you, is
$\frac{1}{10}$. The expected values of the courses of action open to you may be
calculated as shown in Table 3. Needless to say, the rational choice is to
guess that the queen is 40 or under, even though you would be more
likely to be correct if you guessed that she was over 40. By guessing that
the queen is 40 or under, you have a smaller chance of winning money,
but you eliminate the possibility of losing your tongue.

We said that the model of rational decision making, whose use has just
been illustrated, is an ideal model. The ideal may be distant from reality
in various ways: (1) The relevant values cannot always be put into
monetary terms. Even in the example, it was artificial to assign a monetary
value to your tongue. If value cannot be measured in terms of money, how
can it be measured? To use units of utility is simply to give the problem
another name, for how is utility to be measured? (2) The requisite prob-
abilities are to be gotten from our stock of knowledge, via the rules of
inductive logic. But precise and adequate rules of inductive logic have
not yet been formulated. The value of the epistemic probability that
the queen was over 40 had to be based on intuition and educated
guesswork, rather than on precise calculations. (3) In some situations
there may be so many courses of action open that to attempt to evaluate
them all would mean spending all the time in planning and none in acting.

If too much time is spent estimating probabilities and calculating
expected gains down to the last decimal point, we will miss opportuni-
ties that we might otherwise have seized. To be too rational is the ultimate
irrationality.

Suggested readings
Irwin D. Bross, Design for Decision (New York: The Macmillan Com-
p any, 1953).
The following are recommended for the advanced student:
Rudolf Carnap, Logical Foundations of Probability (2nd ed.) (Chicago:
Herbert Simon, "A Behavioral Model of Rational Choice," in Models of
V. 7 Bayes' Theorem. You may wonder what the relation is between a conditional probability \(\Pr(q \text{ given } p) \) and its converse \(\Pr(p \text{ given } q) \). They need not be equal. The probability that Ezekiel is an ape, given that he is a gorilla, is 1. But the probability that Ezekiel is a gorilla, given that he is an ape, is less than 1. The value of a conditional probability is not determined by the value of its converse alone. But the value of a conditional probability can be calculated from the value of its converse, together with certain other probability values. The basis of this calculation is set forth in Bayes' theorem. A simplified version of a proof of Bayes' theorem is presented in Table 4. Step 4 of this table states the simplified version of Bayes' theorem.\(^9\) Note that it allows us to compute conditional probabilities going in one direction—that is, \(\Pr(q \text{ given } p) \)—from conditional probabilities going in the opposite direction—that is, \(\Pr(p \text{ given } q) \) and \(\Pr(p \text{ given } \neg q) \)—together with certain statement probabilities—that is, \(\Pr(q) \) and \(\Pr(\neg q) \). Let us see how this theorem is applied in a concrete example.

Suppose we have two urns. Urn 1 contains eight red balls and two black balls. Urn 2 contains two red balls and eight black balls. Someone has selected an urn by flipping a fair coin. He then has drawn a ball from the urn he selected. Assume that each ball in the urn he selected had an equal chance of being drawn. What is the probability that he selected urn 1, given that he drew a red ball? Bayes' theorem tells us the \(\Pr(\text{urn 1 given red}) \) is equal to

\[
\frac{\Pr(\text{urn 1}) \times \Pr(\text{red given urn 1})}{[\Pr(\text{urn 1}) \times \Pr(\text{red given urn 1})] + [\Pr(\text{urn 2}) \times \Pr(\text{red given urn 2})]}
\]

The probabilities needed may be calculated from the information given in the problem:

\[
\Pr(\text{urn 1}) = \frac{1}{2}
\]
\[
\Pr(\text{urn 2}) = \frac{1}{2}
\]
\[
\Pr(\text{red given urn 1}) = \frac{8}{10}
\]
\[
\Pr(\text{red given urn 2}) = \frac{2}{10}
\]

If these values are substituted into the formula, they give

\[
\Pr(\text{urn 1 given red}) = \frac{\frac{1}{2} \times \frac{8}{10}}{\frac{1}{2} \times \frac{8}{10} + \frac{1}{2} \times \frac{2}{10}} = \frac{\frac{4}{10}}{\frac{4}{10} + \frac{1}{10}} = \frac{4}{5}
\]

A similar calculation will show that \(\Pr(\text{urn 2 given red}) = \frac{1}{5} \). Thus the application of Bayes' theorem confirms our intuition that a red ball is more likely to have come from urn 1 than urn 2, and it tells us how much more likely.

It is important to emphasize the importance of the pure statement probabilities \(\Pr(q) \) and \(\Pr(\neg q) \) in Bayes' theorem. If we had not known that the urn to be drawn from had been selected by flipping a fair coin, if we had just been told that it was selected some way or other, we could not have computed \(\Pr(\text{urn 1 given red}) \). Indeed if \(\Pr(\text{urn 1}) \) and \(\Pr(\neg\text{urn 1}) \) had been different, then our answer would have been different. Suppose that the urn had been selected by throwing a pair of dice. If the dice came up "snake-eyes" (1 on each die), urn 1 would be selected; otherwise urn 2 would be selected. If this were the case, then
Pr(urn 1) = \frac{1}{36} and Pr(\sim urn 1) = Pr(urn 2) = \frac{35}{36}$. Keeping the rest of the example the same, Bayes' theorem gives

\[
Pr(\text{urn 1 given red}) = \frac{\frac{1}{36} \times \frac{8}{10}}{\left(\frac{1}{36} \times \frac{8}{10}\right) + \left(\frac{35}{36} \times \frac{2}{16}\right)} = \frac{\frac{8}{360}}{\frac{8}{360} + \frac{70}{2880}} = \frac{8}{78} = \frac{4}{39}
\]

This is quite a different answer from the one we got when urns 1 and 2 had an equal chance of being selected. In each case Pr(urn 1 given red) is higher than Pr(urn 1). This can be interpreted as saying that in both cases the additional information that a red ball was drawn would raise confidence that urn 1 was selected. But the initial level of confidence that urn 1 was selected is different in the two cases, and consequently the final level is also.

Exercises:

1. The probability that George will study for the test is \(\frac{1}{3}\). The probability that he will pass, given that he studies, is \(\frac{2}{3}\). The probability that he passes, given that he does not study, is \(\frac{1}{10}\). What is the probability that he has studied, given that he passes?

2. Suppose there are three urns. Urn 1 contains six red balls and four black balls. Urn 2 contains nine red balls and one black ball. Urn 3 contains five red balls and five black balls. A ball is drawn at random from urn 1. If it is black, a second ball is drawn at random from urn 2, but if it is red the second ball is drawn at random from urn 3.
 a. What is the probability of the second ball being drawn from urn 2?
 b. What is the probability of the second ball being drawn from urn 3?
 c. What is the probability that the second ball drawn is black, given that it is drawn from urn 2?
 d. What is the probability that the second ball drawn is black, given that it is drawn from urn 3?
 e. What is the probability that the second ball is black?
 f. What is the probability that the second ball was drawn from urn 2, given that it is black?
 g. What is the probability that the second ball was drawn from urn 3, given that it is black?
 h. What is the probability that the second ball was drawn from urn 2, given that it is red?
 i. What is the probability that the second ball drawn was drawn from urn 3, given that it is red?

3. A fair coin is flipped twice. The two tosses are independent. What is the probability of a head on the first toss given a head on the second toss?

Suggested readings

The following may be consulted for further study of the probability calculus:

The following is recommended for the advanced student: